8354 Cao et al.
Macromolecules, Vol. 39, No. 24, 2006
With all these results, it can be concluded that when
incorporating DPP derivatives into polyfluorene, a balance
among color purity, efficiency, and brightness should be
maintained by cautious selection of DPP contents. Moreover,
DPP units can enhance electron injection of copolymers from
cathodes and hence can realize efficient PLEDs with air-stable
high work function cathodes such as Al to elevate device
durability. More efforts will be paid to structure modification
of DPP units themselves to get saturated red emission with
relatively low contents so that high efficiency and brightness
can be ensured at the same time.
Acknowledgment. This work was supported by the National
Natural Science Foundation of China (20272059; 20572111)
and the Guangdong Natural Science Foundation of China
(04002263). The authors thank Dr. Candidate Chun Li in
Institute of Polymer Optoelectronic Materials and Devices,
South China University of Technology, for the fabrication and
characterization of some LED.
Figure 7. Brightness-voltage and current intensity-voltage curves
(inset) of PF-DPP25-35 with device configuration of ITO/PEDOT/
copolymer/Al and ITO/PEDOT/copolymer/Ba/Al, respectively.
injection.38 On the other hand, this kind of interaction can also
lead to disruption of conjugation along copolymer backbone,
thus resulting in significant falling of efficiency and brightness.39
Hence, the EL properties of alternating copolymer PF-DPP50,
where the most intensive and regular Al-N interactions can
occur, with Al as cathode are much inferior to PF-DPP25 and
PF-DPP35, while their EL properties in devices with the
structure of ITO/PEDOT/copolymer/Ba/Al are of the same
order. Also, electroluminescence of PF-DPP5-15, whose
conjugation may be already not good due to random segment
distribution as speculated from behaviors of ITO/PEDOT/
copolymer/Ba/Al devices, is further weakened by this interac-
tion. Similar results that can be attributed to Al-N interactions
have been reported previously in scientific literature.35a
References and Notes
(1) Burroughes, J. H.; Bradly, D. D. C.; Brown, A. R.; Marks, R. N.;
Markay, K.; Friend, R. H.; Burns, B.; Holmes, A. B. Nature (London)
1990, 347, 539.
(2) Heeger, A. J. J. Phys. Chem. B 2001, 105, 8475.
(3) (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int.
Ed. 1998, 37, 402. (b) Friend, R. H.; Gymer, R. W.; Holmes, A. B.;
Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos
Santos, D. A.; Bre´das, J. L.; Lo¨gdlund, M.; Salaneck, W. R. Nature
(London) 1999, 397, 121. (c) Leni, A. Prog. Polym. Sci. 2003, 28,
875.
(4) (a) Kla¨rner, G.; Lee, J.-I.; Davey, M. H.; Miller, R. D. AdV. Mater.
1999, 11, 115. (b) Becker, S.; Ego, C.; Grimsdale, A. C.; List, E. J.
W.; Marsitzky, D.; Pogantsh, A.; Setayesh, S.; Leising, G.; Mu¨llen,
K. Synth. Met. 2002, 125, 73.
(5) (a) Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P.
Appl. Phys. Lett. 1998, 73, 1565. (b) Campbell, A. J.; Bradley, D. D.
C.; Antoniadis, H. J. Appl. Phys. 2001, 89, 3343. (c) Cho, N.-S.;
Hwang, D. H.; Jung, B. J.; Lim, E.; Lee, J.; Shim, H. K. Macromol-
ecules 2004, 37, 5265.
Conclusion
A series of novel diketopyrrolopyrrole (DPP)-containing
polyfluorene derivatives, namely PF-DPP01-50, have been
successfully prepared with moderate molecular weights and
suitable polydispersity, through Pd-catalyzed Suzuki polycon-
(6) (a) Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, Y.
Macromolecules 2002, 35, 6782. (b) Cho, N. S.; Hwang, D. H.; Jung,
B. J.; Oh, J.; Chu, H. Y.; Shim, H. K. Synth. Met. 2004, 143, 277.
(7) (a) Byun, H. Y.; Chung, I. J.; Shim, H. K.; Kim, C. Y. Macromolecules
2004, 37, 6945. (b) Huang, Y.; Lu, Z.-Y.; Peng, Q.; Jiang, Q.; Xie,
R.-G.; Han, S.-H.; Dong, L.-G.; Peng, J.-B.; Cao, Y.; Xie, M.-G.
Mater. Chem. Phys. 2005, 93, 95. (c) Kulkarni, A. P.; Tonzola, C. J.;
Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
(8) Hung, L. S.; Chen, C. H. Mater. Sci. Eng., R 2002, 39, 143.
(9) (a) Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend, R.
H.; Greenham, N. C.; Holmes, P. L.; Kraft, A. Appl. Phys. Lett. 1992,
61, 2793. (b) Zhang, C.; Hoger, S.; Pabbaz, K.; Wudl, F.; Heeger, A.
J. J. Electron. Mater. 1994, 23, 453. (c) Bru¨tting, W.; Berleb, S.;
Mu¨ckl, A. G. Org. Electron. 2001, 2, 1.
(10) (a) Liu, S. P.; Chan, H. S. O.; Ng, S. C. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 4792. (b) Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A.
K. Y. Macromolecules 2002, 35, 6094. (c) Sun, Q.; Zhan, X.; Yang,
C.; Liu, Y.; Li, Y.; Zhu, D. Thin Solid Films 2003, 440, 247.
(11) (a) Wu, W.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W.; Cheng,
Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka,
K.; Munger, S.; O’Brien, J. Microelectron. J. 2004, 35, 343. (b) Li,
B.; Li, J.; Fu, Y.; Bo, Z. J. Am. Chem. Soc. 2004, 126, 3430. (c) Ego,
C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Mu¨llen,
K.; Mackenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc. 2003,
125, 437.
1
densation with different feed ratios. H NMR and elemental
analysis show that these polymers possess well-defined chemical
structures and the actual contents of DPP units is close to feed
ratios, suggesting almost equal reactivity of fluorene monomer
and DPP monomer. DSC and TGA measurements display good
to excellent thermal stabilities of these polymers.
Absorption and photoluminescence spectra of these polymers,
both in CHCl3 and in thin films, vary regularly with increasing
of DPP contents in polymers, and the alternating copolymer
PF-DPP50 is different from others due to more well-mixed
electronic states. While high DPP contents are needed to
completely quench emission from fluorene segments (35 mol
% for CHCl3 solutions and 15% for thin films), only very few
DPP (1 mol %) units are needed to totally suppress this
emission, indicative of different mechanism for photoexcitation
and electric excitation. Emission colors of devices with con-
figuration of ITO/PEDOT/copolymer/Ba/Al change from orange
to red, corresponding to CIE coordinates from (0.52, 0.46) to
(0.62, 0.37), almost linearly with the increasing of DPP contents
in copolymers. The best performance of these devices is given
by orange-emitting PF-DPP01 with maximum EQE of 0.45%
and maximum brightness of 520 cd/m2. Parameters of devices
with structures of ITO/PEDOT/copolymer/Al support the con-
clusion that incorporation of DPP units into polyfluorene main
chain can effectively improve electron affinity.
(12) Farnum, D. G.; Mehta, G.; Moore, G. G. I.; Siegel, F. P. Tetrahedron
Lett. 1974, 15, 2549.
(13) Iqbal, A.; Cassar, L.; Rochat, A. C.; Pfenninger, J. J. Coat. Technol.
1988, 60, 37.
(14) Cao, D.; Liu, Q.; Zeng, W.; Han, S.; Peng, J.; Liu, S. J. Polym. Sci.,
Part A: Polym. Chem. 2006, 44, 2395.
(15) (a) Hudlicky, T.; Seoane, G.; Lovelace, T. C. J. Org. Chem. 1988,
53, 2094. (b) Lee, J. I.; Klaerner, G.; Miller, R. D. Chem. Mater. 1999,
11, 1083.
(16) (a) Inbasekaran, M.; Wu, W.; Woo, E. P. US Patent 5,777,070, 1998.
(b) Yang, X. H.; Yang, W.; Yuan, M.; Hou, Q.; Huang, J.; Zeng, X.
R.; Cao, Y. Synth. Met. 2003, 135, 189.