Eco-Friendly Synthesis of Bis(1H-indol-3-yl)methanes
COMMUNICATIONS
1
ini À 200 MHz spectrometer. Mass spectra were recorded on a
VG Micromass 7070 H (70 eV). CHN analysis was recorded on
a Vario EL analyzer. TLC was performed 0.25 mm E. Merck
precoated silica gel plates (60F-254). 1-Butyl-3-methylimida-
Table 1, entry g: Semisolid; H NMR (CDCl ): d 5.90 (s,
3
1H), 6.45 (d, 1H, J 16.6 Hz), 6.65 (d, 2H, J 2.3 Hz), 7.05 (t,
2H, J 8.1 Hz), 7.15 (t, 2H, J 8.1 Hz), 7.25 (m, 4H), 7.35 (m,
3H), 7.55 (m, 2H), 7.75 (d, 1H, J 16.6 Hz), 7.85 (brs, 2H, NH);
zolium tetrafluoroborate ([bmim]BF ) and 1-butyl-3-methyl-
EIMS: m/z (%) 346 (20) M , 321 (100), 244 (80), 205 (30), 122
4
imidazolium hexafluorophosphate ([bmim]PF ) ionic liquids
(15), 77 (10); IR (KBr): n 3450, 3100, 2960, 1590, 1470, 1030,
6
À1
were prepared according to the procedures reported in the
970, 760 cm .
literature.[
9]
Table 1, entry h: Solid, mp 138 ± 140 8C; H NMR (CDCl ):
1
3
d 1.25 (m, 6H) 1.90 (m, 4H), 2.25 (m, 1H), 4.45 (m, 1H), 6.95
(
8
(
d, 2H, J 2.4 Hz), 7.05 (m, 2H), 7.15 (m, 2H), 7.25 (d, 2H, J
.0 Hz), 7.45 (d, 2H, J 8.0 Hz), 7.85 (brs, 2H, NH); EIMS: m/z
General Procedure
%) 328 (30) M , 246 (80), 130 (25), 84 (60), 57 (90), 41 (100);
IR (KBr): n 3455, 3030, 2980, 1620, 1570, 1285, 1030,
A mixture of indole (2 mmol), aldehyde or ketone (1 mmol) in
À1
7
70 cm .
[
bmim]BF or [bmim]PF (2 mL) was stirred at room temper-
4
6
1
Table 1, entry i: Solid, mp 68 ± 70 8C; H NMR (CDCl ): d
ature for an appropriate time (Table 1). After completion of
the reaction, as indicated by TLC, the reaction mixture was
washed with diethyl ether (3 Â 10 mL). The combined ether
extracts were concentrated under vacuum and the resulting
product was directly charged on a small silica gel column and
eluted with a mixture of ethyl acetate:n-hexane (2:8) to afford
the pure bis-indole. The rest of the viscous ionic liquid was
further washed with ether and reused in subsequent reactions.
3
0
.8 (t, 3H, J 6.8 Hz), 1.25 (m, 6H), 2.25 (m, 2H), 4.60 (t, 1H,
J 6.8 Hz), 6.85 (d, 2H, J 2.3 Hz), 7.05 (t, 2H, J 8.0 Hz), 7.15
(
t, 2H, J 8.0 Hz), 7.35 (d, 2H, J 8.0 Hz), 7.50 (d, 2H, J 8.0
Hz), 7.85 (brs, 2H, NH); EIMS: m/z (%) 316 (70) M , 245
(
100), 206 (5), 199 (40), 156 (60), 149 (35), 117 (30); IR (KBr):
À1
n 3500, 3100, 3030, 2950, 1610, 1580, 1250, 1060, 770 cm .
Acknowledgements
Recycling of Ionic Liquid
BVS thanks CSIR, New Delhi for the award of fellowship.
In case of a hydrophilic ionic liquid, i.e., [bmim]BF , the
4
reaction mixture was diluted water and extracted with ethyl
acetate (2 Â 10 mL). The combined organic extracts were
washed with water, dried over anhydrous Na SO , concen-
References and Notes
2
4
trated under vacuum and the resulting product was purified
either by column chromatography or by recrystallization to
afford pure product. Theionic liquid can berecoveredeither by
extracting the aqueous phase with ethyl acetate or by
evaporating the aqueous layer under vacuum. The ionic liquid
thus obtained was further dried at 80 8C under reduced
pressure for use in subsequent runs.
[
1] a) P. Ehrlich, Medicin Woche 1901, 151; b) L. Morgan, R.
Schunior, J. Org. Chem. 1962, 27, 3696; c) D. J. Dolphin,
Heterocycl. Chem. 1979, 7, 275.
[2] W. Remers, Chem. Heterocycl. Compounds 1972, 25, 1.
[3] a) W. E. Noland, M. R. Venkiteswaran, C. G. Richards, J.
Org. Chem. 1961, 26, 4241; b) J. Banerji, A. Chatterjee, S.
Manna, C. Pascard, T. Prange, J. Shoolery, Heterocycles
1
981, 15, 325.
[
4] a) A. Chatterjee, S. Manna, J. Benerji, T. Prange, J.
Shoolery, J. Chem. Soc. Perkin Trans.I 1980, 553; b) G.
Babu, N. Sridhar, P. T. Perumal, Synth. Commun. 2000,
30, 1609.
5] a) M. Roomi, S. MacDonald, Can. J. Chem. 1970, 48, 139;
b) B. Gregorovich, K. Liang, D. Clugston, S. MacDonald,
Can. J. Chem. 1968, 46, 3291.
Spectroscopic Data for Selected Products
1
Table 1 entry a: Solid, mp 89 ± 90 8C; H NMR (CDCl ): d
3
5
.90 (s, 1H, CH), 6.60 (d, 2H, J 2.4 Hz), 7.05 (t, 2H, J 8.2
Hz), 7.15 (t, 2H, J 8.2 Hz), 7.30 (m, 9H), 7.85 (brs, 2H, NH);
[
13
C NMR (proton decoupled): d 40.5, 110.8, 119.5, 119.8,
120.05, 121.7, 123.6, 126.7, 127.3, 128.5, 128.9, 136.6, 144.2;
EIMS: m/z (%) 322 (100) M , 245 (60), 204 (45), 122 (35), 105
[
6] a) D. Chen, L. Yu, P. G. Wang, Tetrahedron Lett. 1996,
(
7
20), 77 (10); IR (KBr): n 3450, 3020, 1600, 1490, 1220, 1070,
3
7, 4467; b) S. Kobayashi, M. Araki, M. Yasuda, Tetra-
À1
50 cm .
hedron Lett. 1995, 36, 5773; c) M. Johannsen, Chem.
Commun. 1999, 2223; d) W. Z. Luang, N. Gathergood,
R. G. Hazel, K. A. Joergenson, J. Org. Chem. 2001, 66,
1
Table 1, entry b: Solid, mp 199 ± 200 8C; H NMR (CDCl ):
3
d 3.70 (s, 3H), 3.80 (s, 3H), 5.75 (s, 1H), 6.70 (d, 2H, J 2.4
Hz), 6.80 (d, 2H, J 8.0 Hz), 6.85 (s, 1H), 6.90 (d, 2H, J 8.0
1
009.
[7] a) Recent reviews on ionic liquids: T. Welton, Chem. Rev.
999, 99, 2071; b) P. Wasserscheid, W. Keim, Angew.
Hz), 7.05 (t, 2H, J 8.0 Hz), 7.30 (t, 4H, J 8.0 Hz), 10.45 (brs,
2
(
H, NH); EIMS: m/z (%) 382 (100) M , 265 (10), 245 (50), 69
1
20); IR (KBr): n 3450, 3060, 2980, 1620, 1490, 1230, 1005,
À1
Chem. Int. Ed. 2000, 39, 3772; c) Catalytic reactions in
ionic liquids: R. Sheldon, Chem. Commun. 2001, 2399.
8] Ionic liquids have already been described as catalysts:
a) C. Wheeler, K. N. West, C. L. Liotta, C. A. Eckert,
Chem. Commun. 2001, 887; b) J. Peng, Y. Deng, Tetra-
hedron Lett. 2001, 42, 5917; c) Br˘nsted acidic ionic
liquids as dual solvent and catalysts: A. C. Cole, J. L.
760 cm .
1
Table 1, entry c: Solid, mp 153 ± 154 8C; H NMR (CDCl ):
3
[
d 5.85 (s, 1H), 6.75 (d, 2H, J 2.3 Hz), 6.85 (m, 1H), 6.90 (m,
2
H), 6.95 ± 7.05 (m, 4H), 7.2 (s, 1H), 7.25 (t, 2H, J 8.0 Hz), 7.35
(
(
(
s, 1H), 7.75 (brs, 2H, NH); EIMS: m/z (%) 390 (100) M , 392
60) (M 2) , 274 (80), 245 (50), 204 (20), 176 (5), 117 (10); IR
KBr): n 3480, 3050, 2970, 1600, 1470, 1250, 1020, 770.
Adv. Synth. Catal. 2003, 345, 349 ± 352
351