10.1002/chem.202100975
Chemistry - A European Journal
RESEARCH ARTICLE
protons, HSQC indicates that the C3 and C5 carbon signals
were previously interchanged in Reeves’ assignments, as well
as the C4 and C12 carbon resonances. Seeking further
evidence for our assignment of the signal at 130.9 ppm as C16,
we also found literature proton and carbon data obtained for the
natural product ambruticin VS3[54]. Assignments in this data set
closely matched the eastern half of our synthetic ambruticin J
and identified C16 at 130.7 ppm. The sum of this analysis
confirms our assignment of the carbon NMR data for ambruticin
Keywords: !"!#$%&$%'()*+*,-$."(/0).-.*+*1"2$,'!/)&-'*+*
/$/'#*."(/0).-.*+*('/3&'#*%&$43!/*
[1]
[2]
F. Hahn, F. N. Guth, Nat. Prod. Rep. 2020, 37, 1300-1315.
S. M. Ringel, R. C. Greenough, S. Roemer, D. Connor, A. L.
Gutt, B. Blair, G. Kanter, M. V. Strandtmann, J. Antibiot.
(Tokyo) 1977, 30, 371–375.
J
and the total synthesis of this putative biosynthetic
intermediate.
[3]
L. F. Shubitz, J. N. Galgiani, Z.-Q. Tian, Z. Zhong, P.
Timmermans, L. Katz, Antimicrob. Agents Chemother. 2006, 50,
3467–3469.
H
H
H
O
[4]
[5]
D. T. Connor, R. C. Greenough, M. Von Strandtmann, J. Org.
Chem. 1977, 42, 3664–3669.
D. T. Connor, M. Von Strandtmann, J. Org. Chem. 1978, 43,
4606–4607.
R
16
OH OH
H
H
R = -CH2OH, 23
R = -CO2CH3, 22
R = -CO2H, ambruticin J, 1
[6]
[7]
G. Just, P. Potvin, Can. J. Chem. 1980, 58, 2173–2177.
N. J. Barnes, A. H. Davidson, L. R. Hughes, G. Procter, V.
Rajcoomar, Tetrahedron Lett. 1981, 22, 1751–1754.
V. Michelet, J.-P. Genet, Curr. Org. Chem. 2005, 9, 405.
H
H
H
H
H
O
O
HO2C
[8]
16
H
H
[9] A. Dongo, N. Bataillé-Simoneau, C. Campion, T. Guillemette, B.
Hamon, B. Iacomi-Vasilescu, L. Katz, P. Simoneau, Appl.
Environ. Microbiol. 2009, 75, 127–134.
OH
N(CH3)2
ambruticin VS3
1H-16
(ppm)
13C-16
(ppm)
[10] L. Vetcher, H. G. Menzella, T. Kudo, T. Motoyama, L. Katz,
Antimicrob. Agents Chemother. 2007, 51, 3734–3736.
[11] F. J. Marcos-Torres, C. Volz, R. Müller, Nat. Commun. 2020, 11,
5563.
Natural and synthetic
ambruticin structures
isolated ambruticin J, 1
synthetic ambruticin J, 1
5.25
5.26
124.3
130.9
intermediate triol, 23
5.25
5.25
5.30
130.9
130.9
130.7
[12] S. Shadomy, C. J. Utz, S. White, Antimicrob. Agents Chemother.
1978, 14, 95–98.
[13] P. Knauth, H. Reichenbach, J. Antibiot. (Tokyo) 2000, 53, 1182–
1190.
ambruticin J methyl ester, 22
isolated ambruticin VS3
[14] J. Wesolowski, R. Y. A. Hassan, K. Reinhardt, S. Hodde, U.
Bilitewski, J. Appl. Microbiol. 2010, 108, 462.
[15] S. M. Berberich, R. J. Cherney, J. Colucci, C. Courillon, L. S.
Geraci, T. A. Kirkland, M. A. Marx, M. F. Schneider, S. F.
Martin, Tetrahedron 2003, 59, 6819–6832.
Figure 4. NMR Correlation between Ambruticin Structures.
Conclusion
[16] S. Hanessian, T. Focken, X. Mi, R. Oza, B. Chen, D. Ritson, R.
Beaudegnies, J. Org. Chem. 2010, 75, 5601–5618.
[17] A. S. Kende, J. S. Mendoza, Y. Fujii, Tetrahedron 1993, 49,
8015–8038.
[18] T. A. Kirkland, J. Colucci, L. S. Geraci, M. A. Marx, M.
Schneider, D. E. Kaelin, S. F. Martin, J. Am. Chem. Soc. 2001,
123, 12432–12433.
[19] E. Lee, S. J. Choi, H. Kim, H. O. Han, Y. K. Kim, S. J. Min, S.
H. Son, S. M. Lim, W. S. Jang, Angew. Chem. Int. Ed. 2002, 41,
176–178.
[20] P. Liu, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772–
10773.
[21] B. Julien, Z.-Q. Tian, R. Reid, C. D. Reeves, Chem. Biol. 2006,
13, 1277–1286.
[22] N. Mad Nasir, K. Ermanis, P. A. Clarke, Org. Biomol. Chem.
2014, 12, 3323–3335.
[23] R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5845–5859.
In summary, we have completed the first total synthesis of
ambruticin J,
a putative biosynthetic intermediate in the
biosynthesis of the ambruticin family of natural products. We
synthesized this compound via a triply convergent synthetic
route relying on a Suzuki-Miyaura coupling and a Julia-Kocienski
olefination for fragment assembly to a vinylcyclopropane core.
The synthesis of this strategic linchpin was highlighted by
application of our cyclopropanation methodology. Through total
synthesis we have confirmed the structural assignment of
ambruticin J and corrected an assignment within the existing
literature NMR data for this compound. This synthesis also
provides access to ambruticin J and congeners and sets the
stage for biochemical studies of the enzyme AmbJ and its role in
the epoxidation and cyclization process that eventually leads to
the isolated ambruticins.
[24] S. Friedrich, F. Hahn, Tetrahedron 2015, 71, 1473–1508.
[25] M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 12480–12496.
[26] N. J. Turner, E. O’Reilly, Nat. Chem. Biol. 2013, 9, 285–288.
[27] T. Hollmann, G. Berkhan, L. Wagner, K. H. Sung, S. Kolb, H.
Geise, F. Hahn, ACS Catal. 2020, DOI
10.1021/acscatal.9b05071.
[28] R. E. Taylor, M. K. Ameriks, M. J. LaMarche, Tetrahedron Lett.
1997, 38, 2057–2060.
Acknowledgements
We acknowledge the preliminary efforts of Dr. Coura Diene and
Dr. Matt Wilson for setting the foundation of this project.
Financial support by Notre Dame's Chemistry-Biochemistry-
Biology
Interface
Program,
an
NIH
training
grant
[29] R. E. Taylor, M. J. Schmitt, H. Yuan, Org. Lett. 2000, 2, 601–
603.
[30] R. E. Taylor, F. C. Engelhardt, M. J. Schmitt, H. Yuan, J. Am.
Chem. Soc. 2001, 123, 2964–2969.
[31] R. E. Taylor, C. A. Risatti, F. C. Engelhardt, M. J. Schmitt, Org.
Lett. 2003, 5, 1377–1379.
(T32GM075762), and the National Institute of General Medical
Sciences are gratefully acknowledged (GM084922). We would
also like to thank Dr. Evgenii Kovrigin (Director; Magnetic
Resonance Research Center, Notre Dame) for assisting with the
2D NMR experiments.
4
This article is protected by copyright. All rights reserved.