158
N. Galic´ et al./Journal of Molecular Structure 406 (1997) 153–158
Table 7
UV spectral data of N,NЈ-bis(salicylidene)-2,6-pyridinediamine in various solvents and corresponding tautomeric constants
Solvent
UV spectral data in solvent transparent region l (nm) (10−4 e (l mol−1 cm−1))
Kt [ketoamine]/[enolimine]
enolimine
enolimine
ketoamine
Diethylether
277(2.66)
277(2.66)
277(2.66)
278(2.66)
275(2.62)
275(2.58)
372(2.49)
373(2.49)
372(2.49)
371(2.48)
368(2.45)
367(2.40)
Dichloromethane
Tetrachloromethane
Dioxane
Methanol
Methanol/water 4/l
452(0.05)
452(0.10)
0.02
0.03
[9] G.M. Sheldrick, SHELXS-86, Program for the Automatic
Solution of Crystal Structures, University of Go¨ttingen,
Germany, 1986.
[10] G.M. Sheldrick, SHELXL-93, Program for the Refinement
of Crystal Structures, University of Go¨ttingen, Germany,
1993.
[11] I. Vickovic´, ORTEP92, J. Appl. Crystallogr., 27 (1994) 437.
[12] A.L. Spek, PLUTON, Univ. of Utrecht, The Netherlands,
1993.
[13] Cambridge Structural Database, V5.11, Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge, England,
April 1996.
[14] S.V. Lindeman, M.Yu. Antipin and Yu.T. Struchkov,
Kristallografiya, 33 (1988) 365.
[15] V.G. Puranik, S.S. Tavale, A.S. Kumbhar, R.G. Yerande, S.B.
Padhye and R.J. Butcher, J. Cryst. Spectrosc. Res., 22 (1992)
725.
in polar and non-polar solvents (Table 7). Whereas in
non-polar solvents only the bands of enolimine are
present, in polar solvents additional weak band of
ketoamine emerges at 452 nm. Approximate values
of corresponding tautomeric constants, Kt = [keto-
amine]/[enolimine], estimated on the basis of e values
at 452 nm (ketoamine) and 367–368 nm (enolimine),
amount to 0.02 (methanol) and 0.03 (methanol/water
4/1). Similar values of tautomeric constants have been
obtained for the structurally related 2-(2-pyridyl-
iminomethyl)phenol (Kt amounts to 0.02 in methanol
and 0.09 in methanol/water 4/1), and N,NЈ-bis(sali-
cylidene)-2,3-pyridinediamine (Kt amounts to 0.08 in
methanol and 0.14 in methanol/water 4/1) [7].
The compound studied here shows interesting
properties as analytical reagent for the determination
of metal ions. Preliminary investigations reveal stimu-
lating results for the development of a relevant
spectrofluorimetric method for aluminium.
[16] F. Mansilla-Koblavi, J.A. Tenon, S. Toure, N. Ebby, J.
Lapasset and M. Carles, Acta Cryst. C, 51 (1995) 1595.
[17] N. Hoshino, T. Inabe, T. Mitani and Y. Maruyama, Bull.
Chem. Soc. Jpn., 61 (1988) 4207.
[18] N. Bresciani Pahor, M. Calligaris, P. Delise, G. Dodic, G.
Nardin and L. Randaccio, J. Chem. Soc. Dalton Trans.,
(1976) 2478.
[19] J.P. Corden, W. Errington, P. Moore and M.G.H. Wallbridge,
Acta Cryst. C, 52 (1996) 125.
[20] I. Moustakali-Mavridis, E. Hadjoudis and A. Mavridis, Acta
Cryst. B, 34 (1978) 3709.
[21] C. Escobar and M.T. Garland, Acta Cryst. C, 39 (1983) 1463;
C40 (1984) 889.
[22] A.M. Atria, M.T. Garland, E. Spodine and L. Toupet, Acta
Cryst. C, 47 (1991) 1116.
[23] I. Moustakali-Mavridis, E. Hadjoudis and A. Mavridis, Acta
Cryst. B, 36 (1980) 1126.
[24] R. Herscovitsch, J.J. Charette and E. de Hoffman, J. Am.
Chem. Soc., 95 (1973) 5135.
[25] J.W. Ledbetter, J. Phys. Chem., 81 (1977) 54.
[26] G.C. Percy and D.A. Thornton, J. Inorg. Nucl. Chem., 34
(1972) 3357.
References
[1] R.K. Parashar, R.C. Sharma, A. Kumar and G. Mohan, Inorg.
Chim. Acta, 151 (1988) 201.
[2] E. Hadjoudis, J. Photochem., 17 (1981) 355.
[3] Z. Holzbecher and H.V. van Trung, Collect. Czech. Chem.
Commun., 41 (1976) 1506.
[4] J. Siepak, Polish. J. Chem., 59 (1985) 651.
[5] Z. Cimerman and Z. Stefanac, Polyhedron, 4 (1985) 1755.
[6] Z. Cimerman, N. Galesˇic´ and B. Bosner, J. Mol. Struct., 274
ˇ
(1992) 131.
[7] Z. Cimerman, R. Kiralj and N. Galic´, J. Mol. Struct., 323
(1994) 7.
[8] Z. Cimerman, V. Sinkovic´ and N. Galic´, Euroanalysis VIII,
Edinburgh, 1993.