J . Org. Chem. 2002, 67, 1969-1971
1969
Sch em e 1. New P a th w a y in P d -Ca ta lyzed
Hom ocou p lin g Rea ction s
Tr a n sm eta la tion of P a lla d iu m En ola te a n d
Its Ap p lica tion in P a lla d iu m -Ca ta lyzed
Hom ocou p lin g of Alk yn es:
A Room -Tem p er a tu r e, High ly Efficien t
Rou te To Ma k e Diyn es
Aiwen Lei, Manisha Srivastava, and Xumu Zhang*
Department of Chemistry, Pennsylvania State University,
152 Davey Laboratory, University Park, Pennsylvania 16802
Xumu@chem.psu.edu
Received November 26, 2001
coupling product IV (Scheme 1, path A). In this paper,
we have explored an alternate pathway to form a homo-
coupling product VI (Scheme 1, path B). The intermedi-
ate III formed by the first transmetalation can undergo
a second transmetalation with R2M to generate the
intermediate V. Subsequently, reductive elimination of
V produces the coupling product VI. Although there are
many reports of Pd-catalyzed coupling reactions using
path A in Scheme 1, no systematic study of path B has
been conducted. Research into path B is of significant
interest in exploring the scope of palladium-catalyzed
coupling reactions.
There are some major differences in the two different
pathways depicted in Scheme 1. In path A, the product
R1R2 consists of two parts: one part comes from R1X (I),
and the other originates from R2M. Due to the low
activity of some R1X species such as an aryl chloride or
sterically hindered aryl halide, oxidative addition can be
slow and the overall process to form R1R2 may be
inhibited.3 In contrast, the homocoupling product R2R2
in path B derives from a transmetalation reagent, R2M.
A reagent that readily undergoes oxidative addition, R1X,
can be selected. We propose that the key step in our
desired homocoupling reaction is the second transmeta-
lation of the intermediate III through displacement of
R1M to R2M. In this paper, a new pathway has been
utilized in the palladium-catalyzed homocoupling reac-
tion of alkynes by choosing ethyl bromoacetate as an
appropriate R1X species and an alkynyl copper reagent
as R2M. We propose that a palladium enolate species is
the key intermediate for the transmetalation step.
Palladium enolate chemistry has recently received
considerable attention and enjoyed great progress.2a,f,4
Reaction of Pd(0) complexes with R-halo carbonyl com-
pounds has been reported to produce halopalladium
enolate complexes.5 While it is well-known that the halide
anion can serve as a good leaving group in a transmeta-
Abstr a ct: A novel pathway for the homocoupling reaction
has been achieved using a similar protocol as the cross-
coupling reaction. Ethyl bromoacetate is chosen to initiate
the coupling reaction through oxidative addition to a Pd(0)
species, and an PdBr(enolate) intermediate is formed. This
intermediate can undergo double transmetalation with an
alkynyl copper reagent, and reductive elimination produces
a variety of diynes in high yields.
Over the past several decades, transition-metal-
catalyzed carbon-carbon bond-forming reactions have
been extensively studied and widely applied in organic
synthesis.1 The palladium-catalyzed coupling reaction
has proved to be an extremely powerful tool to construct
carbon-carbon or carbon-heteroatom bonds.2 In a typi-
cal Pd-catalyzed process, oxidative addition of the pal-
ladium(0) species I and an aryl or vinyl halide or triflate
occurs first. Transmetalation of II via a metal reagent
to displace the halide or triflate anion on the palladium
center followed by reductive elimination of III gives the
(1) (a) Tsuji, J . Transition Metal Reagents and Catalysts: Innovations
in Organic Synthesis; Wiley: Chichester, U.K., 2000. (b) Cornils, B.;
Hermann, W. A. Applied Homogeneous Catalysis with Organometallic
Compounds; Wiley: Weinheim, Germany, 1999. (c) Diederich, F.;
Stang, P. J . Metal-catalyzed Crosscoupling Reaction; Wiley-VCH:
Weinheim, Germany, 1998. (d) Beller, M.; Bolm, C. Transition Metals
for Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1998. (e)
Farina, V. In Comprehensive Organometallic Chemistry II; Abel, E.
W., Stone, F. G. A., Wilkinson. G., Eds.; Pergamon: Oxford, U.K., 1995;
Vol. 12, pp 161-240. (f) Leong, W. W.; Larock, R. C. In Comprehensive
Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson,
G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12, pp 131-160. (g) Grigg,
R.; Sridharan, V. In Comprehensive Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K.,
1995; Vol. 12, pp 299-321. (h) Tsuji, J . Palladium Reagents and
Catalysts: Innovation in Organic Synthesis; Wiley: Chichester, U.K.,
1995. (i) Collman, J . P.; Hegedus, L. S.; Norton, J . R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry;
University Science Books: Mill Valley, CA, 1987.
(2) (a) Fox, J . M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J . Am.
Chem. Soc. 2000, 122, 1360-1370. (b) Beletskaya, I. P.; Cheprakov,
A. V. Chem. Rev. 2000, 100, 3009-3066. (c) Hartwig, J . F. In Modern
Amination Methods; Ricci, A., Ed.; Wiley-VCH: Weinheim, Germany,
2000. (d) Yang, B. H.; Buchwald, S. L. J . Organomet. Chem. 1999, 576,
125-146. (e) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J . F.
J . Am. Chem. Soc. 1999, 121, 3224-3225. (f) Kawatsura, M.; Hartwig,
J . F. J . Am. Chem. Soc. 1999, 121, 1473-1478. (g) Aranyos, A.; Old,
D. W.; Kiyomori, A.; Wolfe, J . P.; Sadighi, J . P.; Buchwald, S. L. J .
Am. Chem. Soc. 1999, 121, 4369-4378. (h) Crisp, G. T. Chem. Soc.
Rev. 1998, 27, 427-436. (i) Hartwig, J . F. Angew. Chem., Int. Ed. 1998,
37, 2046-2067. (j) Wolfe, J . P.; Wagaw, S.; Marcoux, J .-F.; Buchwald,
S. L. Acc. Chem. Res. 1998, 31, 805-818. (k) Hartwig, J . F. Acc. Chem.
Res. 1998, 31, 852-860. (l) Farina, V.; Krishnamurthy, V.; Scott, W.
J . Org. React. 1997, 50, 1-652. (m) Miyaura, N.; Suzuki, A. Chem.
Rev. 1995, 95, 2457-2483. (n) Stille, J . K. Angew. Chem., Int. Ed. Engl.
1986, 25, 508-524. (o) Heck, R. F. Org. React. 1982, 27, 345-390.
(3) (a) Luh, T.-Y.; Leung, M.-K.; Wong, K.-T. Chem. Rev. 2000, 100,
3187-3204. (b) Stille, J . K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10,
434-442.
(4) (a) Wang, Z.; Zhang, Z.; Lu, X. Organometallics 2000, 19, 775-
780. (b) Lei, A.; Lu, X. Org. Lett. 2000, 2, 2699-2702. (c) Fujii, A.;
Hagiwara, E.; Sodeoka, M. J . Am. Chem. Soc. 1999, 121, 5450-5458
and references therein. (d) Sodeoka, M.; Shibasaki, M. Pure Appl.
Chem. 1998, 70, 411-418. (e) Wang, Z.; Lu, X. J . Org. Chem. 1996,
61, 2254-2255.
(5) (a) Mori, M.; Kubo, Y.; Ban, Y. Tetrahedron 1988, 44, 4321-
4330. (b) Stille, J . K.; Wong, P. K. J . Org. Chem. 1975, 40, 532-534.
(c) Albe´niz, A. C.; Catalina, N. M.; Espinet, P.; Redo´n, R. Organome-
tallics 1999, 18, 5571-5576 and references therein.
10.1021/jo011098i CCC: $22.00 © 2002 American Chemical Society
Published on Web 02/28/2002