Paper
RSC Advances
28 P. Innocenzi, C. Figus, T. Kidchob, M. Valentini, B. Alonso 51 L. Liu, S. J. Park, J. Park and M. E. Lee, RSC Adv., 2015, 5,
and M. Takahashi, Dalton Trans., 2009, 42, 9146–9152. 14273–14276.
29 P. Innocenzi, T. Kidchob and T. Yoko, J. Sol-Gel Sci. Technol., 52 L. Petraru and W. Binder, Polym. Prepr., 2005, 46, 841–842.
2005, 35, 225–235.
30 J. A. A. Sales, A. G. S. Prado and C. Airoldi, Polyhedron, 2001,
21, 2647–2651.
53 An attempt with 1 equivalent of sodium azide instead of an
excess was made to evaluate its inuence on the reaction.
Similarly to the previous conditions, 1H NMR monitoring
was carried out (Fig. ESI_161 in the ESI†) and revealed that
longer reaction times (>11 h) were needed to reach
a complete conversion. Beside these observations, the 1H
NMR and MS spectra were similar.
31 L. Gabrielli, L. Russo, A. Poveda, J. R. Jones, F. Nicotra,
´
J. Jimenez-Barbero and L. Cipolla, Chem.–Eur. J., 2014, 19,
7856–7864.
´
32 L. Gabrielli, L. Connell, L. Russo, J. Jimenez-Barbero,
F. Nicotra, L. Cipolla and J. R. Jones, RSC Adv., 2013, 4, 54 W. Sundermeyer, Chem. Ber., 1963, 96, 1293–1297.
1841–1848.
33 L. S. Connell, F. Romer, M. Suarez, E. M. Valliant, Z. Zhang,
55 C. Eaborn, P. D. Lickiss and A. D. Taylor, J. Organomet.
Chem., 1988, 340, 283–292.
´
P. D. Lee, M. E. Smith, J. V. Hanna and J. R. Jones, J. Mater. 56 G. A. Ayoko and C. Eaborn, J. Chem. Soc., Perkin Trans. 2,
Chem. B, 2014, 2, 668–680. 1986, 8, 1357–1361.
34 P. Innocenzi, A. Sassi, G. Brusatin, M. Guglielmi, D. Favretto, 57 S. Tang, T. Ikai, M. Tsuji and Y. Okamoto, J. Sep. Sci., 2010,
R. Bertani, A. Venzo and F. Babonneau, Chem. Mater., 2001,
13, 3635–3643.
35 J. A. A. Sales, A. G. S. Prado and C. Airoldi, Polyhedron, 2002,
21, 2647–2651.
33, 1255–1263.
58 M. Arslan, S. Sayin and M. Yilmaz, Tetrahedron: Asymmetry,
2013, 24, 982–989.
59 W. Tang, J. Zhao, B. Sha and H. Liu, J. Appl. Polym. Sci., 2013,
127, 2803–2808.
ˇ
36 H. E. Romeo, M. A. Fanovich, R. J. J. Williams, L. Matejka,
ˇ
J. Plestil and J. Brus, Macromolecules, 2007, 40, 1435–1443.
60 H. M. Tan, S. F. Soh, J. Zhao, E. L. Yong and Y. Gong,
Chirality, 2011, 23, E91–E97.
61 J. Gorzynski Smith, Synthesis, 1984, 8, 629–656.
37 M. A. Melo Jr, F. J. V. E. Oliveira and C. Airoldi, Appl. Clay Sci.,
2008, 42, 130–136.
38 R. K. Iha, K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade 62 G. H. Posner and D. Z. Rogers, J. Am. Chem. Soc., 1977, 99,
and C. J. Hawker, Chem. Rev., 2009, 109, 5620–5686.
8208–8214.
0
´
39 M. L. Gomez, I. E. dell Erba, C. A. Chesta, C. E. Hoppe and 63 D. B. G. Williams and M. Lawton, Org. Biomol. Chem., 2005,
R. J. J. Williams, J. Mater. Sci., 2013, 48, 8559–8565.
3, 3269–3272.
40 These value of integrals are measured by giving the reference 64 A. S. Capes, A. T. Crossman, L. A. Webster, M. A. J. Ferguson
value to the CH2-Si signals at 0.6 ppm respectively
integrating for 2H.
and I. H. Gilbert, Tetrahedron Lett., 2011, 52, 7091–7094.
65 G. Prestat, C. Baylon, M.-P. Heck and C. Mioskowski,
Tetrahedron Lett., 2000, 41, 3829–3831.
¨
41 L. Rosch, P. John and R. Reitmeier, Silicon Compounds,
Organic, in Ullmann's Encyclopedia of Industrial Chemistry, 66 L.-W. Xu, L. Li, C.-G. Xia and P.-Q. Zhao, Tetrahedron Lett.,
Wiley-VCH Verlag GmbH & Co. KGaA, 2000. 2004, 45, 2435–2438.
42 M. G. Voronkov, V. P. Mileshkevich and Y. A. Yuzhelevskii, 67 P. N. Guivisdalsky and R. Bittman, J. Am. Chem. Soc., 1989,
Siloxane Bond: Physical Properties and Chemical
Transformations, Springer, US, New York, NY, 1978.
43 J. A. Barreto, M. Matterna, B. Graham, H. Stephan and
L. Spiccia, New J. Chem., 2011, 35, 2705–2712.
111, 3077–3079.
68 An approximate ratio of 1 : 1 for chlorine vs. alcohol adducts
could be calculated from 1H NMR spectra and isolated
products. The addition of the alcohol on the epoxide ring
being hindered by the competing chlorine addition and by
intermolecular trans-etherication, detailed results for
ZnCl2 are not presented.
69 See ESI (ESI_183†). This annex H gathers examples of the
literature when using BF3$Et2O for functionalization of
glycidylalkoxysilanes that could suggest misinterpretations.
44 Full characterizations of the resulting compounds
(ESI_19–27) and 7 (ESI_28–36) are disclosed in ESI.†
Structural proofs for the cyclised compound were
interestingly given by HSQC NMR and HRMS analysis.
6
7
´
45 J. Gulinski, H. Maciejewski, I. D˛abek and M. Zaborski, Appl.
Organomet. Chem., 2001, 15, 649–657.
46 B. Yan, X.-L. Wang, K. Qian and H.-F. Lu, J. Photochem. 70 M. D. Curran, T. E. Gedris and A. E. Stiegman, Chem. Mater.,
Photobiol., A, 2010, 212, 75–80.
1998, 10, 1604–1612.
47 B. Yan and H.-F. Lu, Inorg. Chem., 2008, 47, 5601–5611.
48 M. M. Wan, L. Gao, Z. Chen, Y. K. Wang, Y. Wang and
J. H. Zhu, Microporous Mesoporous Mater., 2012, 155, 24–33.
71 C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics
and Chemistry of Sol–Gel Processing, Gulf Professional
Publishing, 1990.
49 Full characterizations of the resulting compounds
8
72 P. Saenz, R. E. Cachau, G. Seoane, M. Kieninger and
O. N. Ventura, J. Phys. Chem. A, 2006, 110, 11734–11751.
(ESI_37–45), 9 (ESI_46–54), 10 (ESI_55–63) and 11 (ESI_64–
71) are disclosed in ESI.† Structural proofs for the cyclised 73 G. K. S. Prakash, T. Mathew, E. R. Marinez, P. M. Esteves,
compound 9 and 10 were interestingly given by HSQC
NMR and HRMS analysis.
50 L. Moni, A. Ciogli, I. D'Acquarica, A. Dondoni, F. Gasparrini
and A. Marra, Chem.–Eur. J., 2010, 16, 5712–5722.
G. Rasul and G. A. Olah, J. Org. Chem., 2006, 71, 3952–3958.
74 Y. Xin, Z. Rui and L. Guoquan, J. Liq. Chromatogr. Relat.
Technol., 2000, 23, 1821–1830.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 74087–74099 | 74099