View Article Online
1
the (p?p*) transition. Table 1 contains the values for the three
casting these complexes directly from solution and that these
iridium complexes.
DSC analysis shows that complexes 2–4 are amorphous
solids upon removal of the solvent (Fig. 1). All DSC data were
films operate as the emissive layer within an LED configura-
tion. Further optimization of LED performance is expected
upon blending conjugated polymers with the iridium complexes
and by better engineering of the device structure.
The authors are grateful to the NSF and to the ONR for
financial support of this work. J. C. O. is a National Kodak
Fellow.
2
1
taken at a scanning rate of 10 °C min . The ligand framework
influences the glass transition temperature and the stability of
the amorphous state. Complexes 2 and 3 show only glass
transitions at 98 and 110 °C, respectively. The heating trace of
complex 4 shows a glass transition at 83 °C, followed by
crystallization at 130 °C, a solid–solid state transition and
melting at 203 °C. For this set of compounds, the molecules
with smaller ligands give rise to higher glass transition
temperatures and are more resistant to crystallization. AFM
studies show that, for all cases, casting from toluene results in
smooth films, with an average mean roughness of ca. 0.3 nm.
Solid state fluorescence efficiencies (FSSPL) were deter-
mined using an integrating sphere according to published
protocols (Table 1).22 All films were spun cast onto a quartz
substrate from 1% toluene solutions. For these measurements
the complexes were excited at 365 nm. An efficiency of 1.3 ±
Notes and references
1
2
3
J. Kido, H. Haromichi, K. Hongawa, K. Nagai and K. Okuyama, Appl.
Phys. Lett., 1994, 65, 2124.
X. Zhang, R. Sun, Q. Zheng, T. Kobayashi and W. Li, Appl. Phys. Lett.,
1
997, 71, 2596.
M. A. Baldo, D. F. OABrien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson and S. R. Forrest, Nature, 1998, 395, 151.
4 Z. Hong, C. Liang, R. Li, W. Li, D. Zhao, D. Fan, D. Wang, B. Chu, F.
Zang, L.-S. Hong and S.-T. Lee, Adv. Mater., 2001, 1241.
5
(a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S.
R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (b) D. F. OABrien, M. A. Baldo,
M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442.
W. Helfricha and W. G. Schneider, J. Chem. Phys., 1966, 2909.
Y. Cao, I. D. Parker, G. Yu, C. Zhang and A. J. Heeger, Nature, 1999,
1
% was determined for 2. While low, this efficiency should be
compared against that of 1, for which no emission could be
detected under our experimental conditions. It should be noted
that efforts to obtain smooth films of 1 failed – only opaque
polycrystalline samples formed. For compound 3, FSSPL = 1.7
6
7
3
97, 414.
8
M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramsesha and Z. V.
±
0.5%. Complex 4, which has two fluorene units ortho on the
Vardeny, Nature, 2001, 409, 494.
9 M. E. Thompson, Appl. Phys. Lett., 2000, 77, 904; A. Chihaya, M. A.
Baldo, S. R. Forrest and R. C. Kwong, Appl. Phys. Lett., 2001, 78,
pyridine ring, has a FSSPL of 11 ± 1%. It is seen that increasing
the bulk around the iridium center prevents self-quenching.
Device performance was tested with a general LED archi-
1
622.
10 F. O. Garces, K. A. King and R. J. Watts, Inorg. Chem., 1988, 27,
464.
23
tecture of ITO (indium tin oxide)/PEDOT /Ir complex (1000
Å)/Ca (900 Å)/Ag (1000 Å). Modest efficiencies were observed
of 0.1 cd/A, 0.04 cd/A, and 0.07 cd/A for complexes 2, 3, and
, respectively. The quantum efficiencies for all devices are
.1%. Devices manufactured without the use of PEDOT were
3
1
1 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C.
Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, J. Am. Chem.
Soc., 2001, 123, 4304; V. V. Grushin, N. Herron, D. D. LeCloux, W. J.
Marshall, V. A. Petrov and Y. Wang, Chem. Commun., 2001, 1494.
4
0
on average 50% lower in efficieny than devices with PEDOT. In
all cases, the electroluminescence and the phosphorescence
spectra were identical.
In summary, we have shown that iridium complexes
supported by phenylpyridine ligands with fluorene groups give
rise to amorphous solids. The extent of conjugation can be used
to tune emission color, and the ligand environment controls
solid state fluorescence quenching. From a practical per-
spective, it is noteworthy that smooth films can be obtained by
12 H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung,
S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng and C. M. Che, Adv.
Mater., 2001, 13, 1245.
1
1
3 C.-L. Lee, K. B. Lee and J.-J. Kim, Appl. Phys. Lett., 2000, 77, 2280.
4 M. D. McGehee, T. Bergstedt, C. Zhang, A. P. Saab, M. B. O’Regan, G.
C. Bazan, V. I. Srdanov and A. J. Heeger, Adv. Mater., 1999, 11,
1
349.
1
5 (a) W. J. Oldham, Jr., R. J. Lachicotte and G. C. Bazan, J. Am. Chem.
Soc., 1998, 120, 2987; (b) S. Wang, W. J. Oldham, Jr., R. A. Hudack, Jr.
and G. C. Bazan, J. Am. Chem. Soc., 2000, 122, 5695; (c) J. C.
Ostrowski, R. A. Hudack, M. R. Robinson, S. Wang and G. C. Bazan,
Chem. Eur. J., 2001, 7, 4500.
1
1
6 C. A. Angell, Science, 1995, 267, 1924.
7 For the effect of ligand structure on solution self-quenching processes
see: H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S.
Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng and C. M. Che, Adv.
Mater., 2001, 13, 1245.
1
1
2
8 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 2457.
9 S. H. Lee and T. Tsutsui, Thin Solid Films, 2000, 303(1–2), 76.
0 (a) M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Güdel, M. Fortsch
and H.-B. Burgi, Inorg. Chem., 1994, 33, 545; (b) K. Dedeian, P. I.
Djurovich, F. O. Graces and R. J. Watts, Inorg. Chem., 1991, 30, 1685;
(c) M. G. Colombo, A. Hauser and H. U. Güdel, Inorg. Chem., 1993, 32,
3
1
081; (d) M. G. Colombo, A. Hauser and H. U. Güdel, Inorg. Chem.,
993, 32, 3088; (e) M. G. Colombo, A. Hauser and H. U. Güdel, Top.
Curr. Chem., 1994, 171, 144.
2
2
1 S. Meech and D. Phillips, J. Photochem., 1983, 23, 193.
2 N. C. Greenhem, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R.
R. Kessener, S. C. Moratti, A. B. Holmes and R. H. Friend, Chem. Phys.
Lett., 1995, 241, 89; J. C. de Mello, H. F. Wittmann and R. H. Friend,
Adv. Mater., 1997, 9, 230.
2
3 PEDOT is polyethylenedioxythiophene-polystyrenesulfonic acid which
is used to improve device performance of OLEDs.
Fig. 1 DSC scans of 2–4: (a) crystallization; (b) melting.
CHEM. COMMUN., 2002, 784–785
785