10.1002/anie.201701789
Angewandte Chemie International Edition
COMMUNICATION
[6]
M. Kotnik, J. Humljan, C. Contreras-Martel, M. Oblak, K. Kristan, M.
Hervé, D. Blanot, U. Urleb, S. Gobec, A. Dessen, T. Solmajer, J. Mol.
Biol. 2007, 370, 107-115.
derivative of 3-methylglutamic acid using our novel methodology
(Figure 2). Keeping 0.5 M as fixed concentration of 1a, a flow
rate of 0.5 mL/min was accepted as the optimal rate (Table S9 in
the SI). The results indicated that the flow system could
effectively suppress the unwanted [3+2] cycloaddition primarily
due to the short residence time of the desired 1,4-adduct on the
solid catalyst. With the optimized conditions in hand, the desired
3-methylglutamic acid derivative was continuously synthesized
for a period of 38 h with high yield (94%) and significantly high
selectivity (1,4 addition/ [3+2] cycloaddition = 99:1; anti:syn for
1,4 adduct = >99:1) (Table S10 in the SI).
[7]
[8]
[9]
a) A. S. Vadim, Curr. Org. Chem. 2002, 6, 341-364; b) C. Nájera, J. M.
Sansano, Chem. Rev. 2007, 107, 4584-4671.
S. Saito, T. Tsubogo, S. Kobayashi, J. Am. Chem. Soc. 2007, 129,
5364-5365.
a) V. A. Soloshonok, C. Cai, V. J. Hruby, L. Van Meervelt, N.
Mischenko, Tetrahedron 1999, 55, 12031-12044; b) V. A. Soloshonok,
C. Cai, V. J. Hruby, Org. Lett. 2000, 2, 747-750; c) V. A. Soloshonok, C.
Cai, T. Yamada, H. Ueki, Y. Ohfune, V. J. Hruby, J. Am. Chem. Soc.
2005, 127, 15296-15303.
[10] Phase-transfer catalysis in the presence of stoichiometric amounts of
bases, see: a) C. Alvarez-Ibarra, A. G. Csakye, M. Maroto, M. L.
Quiroga, J. Org. Chem. 1995, 60, 6700-6705; b) D. Tasheva, N.
Petkova, V. Dryanska, Synth. Commun. 2003, 33, 3661-3670; c) T. Ma,
X. Fu, C. W. Kee, L. Zong, Y. Pan, K.-W. Huang, C.-H. Tan, J. Am.
Chem. Soc. 2011, 133, 2828-2831; d) M.-Q. Hua, L. Wang, H.-F. Cui, J.
Nie, X.-L. Zhang, J.-A. Ma, Chem. Commun. 2011, 47, 1631-1633; e) A.
E. Sheshenev, E. V. Boltukhina, A. J. P. White, K. K. Hii, Angew. Chem.
Int. Ed. 2013, 52, 6988-6991; Angew. Chem. 2013, 125, 7126–7129; f)
V. I. Maleev, M. North, V. A. Larionov, I. V. Fedyanin, T. F. Savel'yeva,
M. A. Moscalenko, A. F. Smolyakov, Y. N. Belokon, Adv. Synth. Catal.
2014, 356, 1803-1810; g) M. Tiffner, J. Novacek, A. Busillo, K. Gratzer,
A. Massa, M. Waser, RSC Adv. 2015, 5, 78941-78949; h) S. Wen, X. Li,
W. Yao, A. Waheed, N. Ullah, Y. Lu, Eur. J. Org. Chem. 2016, 2016,
4298-4301; i) A. Chandra, R. Viswanathan, J. N. Johnston, Org. Lett.
2007, 9, 5027-5029.
In summary, we have developed an efficient methodology for
the synthesis of 3-substituted glutamic acid derivatives via
stereoselective 1,4-addition of glycine derivatives to α,β-
unsaturated esters in the presence of CsF·Al2O3 as a robust
recyclable solid base catalyst. Several β-substituted α,β-
unsaturated esters, notably, β-alkyl substituted α,β-unsaturated
esters gave the desired adducts in high diastereoselectivities. It
was found that CsF·Al2O3 could suppress the unwanted
formation of pyrrolidines derivations via [3+2] cycloaddition,
which was otherwise predominant over the 1,4-addtion reaction.
We recognized an interaction of Cs+ from the crystalline phase
of Cs3AlF6 with the O atom form the support is responsible for
the generation of active site in the best catalyst. We also
successfully demonstrated the continuous-flow synthesis of the
3-methyl glutamic acid derivative by using the CsF·Al2O3 catalyst.
Further investigation to apply this solid base to other reactions is
in progress.
[11] Simple metal base or non-metal base catalysis, see: a) J. Beck, L.
Vercheval, C. Bebrone, A. Herteg-Fernea, P. Lassaux, J. Marchand-
Brynaert, Bioorg. Med. Chem. Lett. 2009, 19, 3593-3597; b) J. S. Tullis,
M. J. Laufersweiler, J. C. VanRens, M. G. Natchus, R. G. Bookland, N.
G. Almstead, S. Pikul, B. De, L. C. Hsieh, M. J. Janusz, T. M. Branch, S.
X. Peng, Y. Y. Jin, T. Hudlicky, K. Oppong, Bioorg. Med. Chem. Lett.
2001, 11, 1975-1979; c) E. Domínguez, M. J. O'Donnell, W. L. Scott,
Tetrahedron Lett. 1998, 39, 2167-2170; d) B. Herradón, E. Fenude, R.
Bao, S. Valverde, J. Org. Chem. 1996, 61, 1143-1147; e) A. Shibuya, M.
Kurishita, C. Ago, T. Taguchi, Tetrahedron 1996, 52, 271-278; f) P.
Pachaly, H.-S. Kang, D. Wahl, Arch. Pharm. 1991, 324, 989-995; g) K.
Shuji, T. Akira, W. Eiji, T. Otohiko, Chem. Lett. 1989, 18, 1301-1304; h)
J. M. McIntosh, R. K. Leavitt, P. Mishra, K. C. Cassidy, J. E. Drake, R.
Chadha, J. Org. Chem. 1988, 53, 1947-1952.
Acknowledgements
This work was partially supported by a Grant-in-Aid for Science
Research from the Japan Society for the Promotion of Science
(JSPS) and Ministry of Education, Culture, Sports, Science and
Technology (MEXT), and the Japan Science and Technology
Agency (JST). P.B. thanks JSPS Postdoctoral Fellowship for
Research in Japan. The authors thank Prof. Noritaka Mizuno
and Prof. Kazuya Yamaguchi from the Department of Applied
Chemistry at The University of Tokyo for the CO2-TPD analysis.
A special thanks to Dr. Yoshiyuki Ogasawara for his valuable
support on conducting the series of CO2-TPD analysis.
[12] a) E. J. Corey, M. C. Noe, F. Xu, Tetrahedron Lett. 1998, 39, 5347-
5350; b) D. Tzalis, P. Knochel, Tetrahedron Lett. 1999, 40, 3685-3688;
c) M. Strohmeier, K. Leach, M. A. Zajac, Angew. Chem. Int. Ed. 2011,
50, 12335-12338; Angew. Chem. 2011, 51, 12543-12546.
[13] a) R. Viswanathan, C. R. Smith, E. N. Prabhakaran, J. N. Johnston, J.
Org. Chem. 2008, 73, 3040-3046; b) J. S. Bandar, T. H. Lambert, J. Am.
Chem. Soc. 2012, 134, 5552-5555.
[14] a) L. Antolini, A. Forni, I. Moretti, F. Prati, E. Laurent, D. Gestmann,
Tetrahedron: Asymmetry 1996, 7, 3309-3314; b) O. Marrec, C.
Christophe, T. Billard, B. Langlois, J.-P. Vors, S. Pazenok, Adv. Synth.
Catal. 2010, 352, 2825-2830.
Keywords: alkali metal fluorides on alumina • β-Glutamic acid
derivatives • flow synthesis • solid base • stereoselective addition
reactions
[15] J. S. Bandar, A. Barthelme, A. Y. Mazori, T. H. Lambert, Chem. Sci.
2015, 6, 1537-1547.
[1]
a) H. Hattori, Appl. Catal., A 2001, 222, 247-259; b) Y. Ono, J. Catal.
2003, 216, 406-415; c) A. Ting, J. M. Goss, N. T. McDougal, S. E.
Schaus, in Asymmetric Organocatalysis (Ed.: B. List), Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 201-232; d) S. E. Denmark, G.
L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560-1638, Angew. Chem.
2008, 120, 1584-1663.
[16] a) T. Tsubogo, S. Saito, K. Seki, Y. Yamashita, S. Kobayashi, J. Am.
Chem. Soc. 2008, 130, 13321-13332; b) M. Hut'ka, T. Tsubogo, S.
Kobayashi, Adv. Synth. Catal. 2013, 355, 1561-1569.
[17] J.-M. Clacens, D. Genuit, B. Veldurthy, G. Bergeret, L. Delmotte, A.
Garcia-Ruiz, F. Figueras, Appl. Catal., B 2004, 53, 95-100.
[18] S. Kobayashi, Chem. Asian J.2016, 11, 425-436.
[2]
[3]
[4]
H. Hattori, Appl. Catal., A 2015, 504, 103-109.
[19] a) T. Tsubogo, H. Oyamada, S. Kobayashi, Nature 2015, 520, 329-332;
b) S. Kobayashi, M. Okumura, Y. Akatsuka, H. Miyamura, M. Ueno, H.
Oyamada, ChemCatChem 2015, 7, 4025-4029; c) H. Ishitani, Y. Saito,
T. Tsubogo, S. Kobayashi, Org. Lett. 2016, 18, 1346-1349.
H. Pines, W. Haag, J. Org. Chem. 1958, 23, 328-329.
J.-M. Clacens, D. Genuit, L. Delmotte, A. Garcia-Ruiz, G. Bergeret, R.
Montiel, J. Lopez, F. Figueras, J. Catal. 2004, 221, 483-490.
J. Ni, D. Rooney, F. C. Meunier, Appl. Catal., B 2010, 97, 269-275.
[5]
This article is protected by copyright. All rights reserved.