10.1002/adsc.202001119
Advanced Synthesis & Catalysis
Acknowledgements
9, 3066-3082; i) D. J. Gorin, B. D. Sherry, F. D. Toste,
Chem. Rev. 2008, 108, 3351-3378.
We thank the Ministry of Education (MOE 106N506CE1) and the
Ministry of Science and Technology (MOST 107-3017-F-007-
002), Taiwan, for financial support of this work.
[7] CCDC-2013288 (3a), CCDC-2013287 (5j), and
CCDC-2022885 (6) contain the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge
References
Crystallographic
Data
Centre
via
[1] For reviews on N,O-functionalizations of alkynes, see:
a) H. S.Yeom, S. Shin, Acc. Chem. Res, 2014, 47, 966-
977; b) D. B. Huple, S. Ghorpade, R. S. Liu, Adv. Synth.
Catal. 2016, 358, 1348-1367; c) A. S. K. Hashmi,
Chem. Rev. 2007, 107, 3180-3211.
[8] Formation of compound 6 (Eq 8) was produced from
gold-carbene intermediates because the ortho-
methylphenyl substituent of nitrone impedes the phenyl
attack. The optimized geometry of TSbc required a
planar geometry between this phenyl and C=N-O plane
so that the distance became minimized to 4.25 Å. The
presence of an ortho-methyl group is expected to
increase this distance because this planarity is not
maintained because of steric hindrance. This effect is
expected to generate gold carbenes.
[2] See selected reviews: a) F. Hu, M. Szostak, Adv. Synth.
Catal. 2015, 357, 2583-2614; b) P. Vitale, A. Scilimati,
Curr. Org. Chem. 2013, 17, 1986-2000; c) A. L.
Sukhorukov, S. L. Lorfe, Chem. Rev. 2011, 111, 5004-
5041; d) P. Grunanger, P. Vita-Finzi, J. E. Dowling, in:
Chemistry of Heterocyclic Compounds, Part 2, Vol. 49,
(Ed.: E. C. Taylor. P. Wipf), Wiley, New York USA,
1999, pp 1-888; e) P. Pevarello, R. Amici, M. G.
Brasca, M. Villa, M. Virasi, in: Targets in Heterocyclic
Systems 1999, 3, 301-339.
[3] a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S.
Bhunia, S. N. Karad, R. S. Liu, J. Am. Chem. Soc. 2011,
133, 15372-15375; b) Y. C. Hsu, S. A. Hsieh, P. H. Li,
R. S. Liu, Chem. Commun. 2018, 54, 2114-2117; c) R.
L. Sahani, M. D. Patil, S. B. Wagh, R. S. Liu, Angew.
Chem., Int. Ed. 2018, 57, 14878-14882; d) H. Wei, M.
Bao, K. Dong, L. Qiu, B. Wu, W. Hu, X. Xu, Angew.
Chem., Int. Ed. 2018, 57, 17200-17204; e) H. S. Yeom,
Y. Lee, J. E. Lee, S. Shin, Org. Biomol. Chem. 2009, 7,
4744-4752; f) D. Quin, J. Zhang, Chem. Eur. J. 2013,
19, 6984-6988; g) H. Yeom, J. Lee, S. Shin, Angew.
Chem. Int. Ed. 2008, 47, 7040-7043.
[9] The geometry optimizations and zero-point vibrational
energy (ZPVE) were calculated using the B3LYP-D3
functional combined with the LANL2DZ basis set for
Au and the 6-31G** basis set for the other atoms
(denoted as LACVP**). To obtain a more accurate
electronic energy, single-point energy calculations
based on the same functional, but using a larger basis
set (LANL2TZ for Au and 6-311++G** for the others)
were performed. Solvation energies were calculated
using the CPCM implicit solvation model. The
solvation calculations used the B3LYP/LACVP** level
of theory and the gas-phase optimized structures. The
Gaussian09 package was used for all DFT calculations.
[4] a) R. L. Sahani, R. S. Liu, ACS Catal. 2019, 9, 5890-
5896; b) S. Bhunia, J. C. Chang, R. S. Liu, Org. Lett,
2012, 14, 21, 5522-5525; c) A. V. Sasane, A. S. K. Raj,
T. H. Chao, M. J. Chen, R. S. Liu. Chem. Eur. J.
(10.1002/chem.202003840)
[10] For gold-catalyzed bicyclic annulations involving two
components; see selected examples: a) A. S. K. Raj, R.
S. Liu., Angew. Chem. Int. Ed. 2019, 58, 10980-10984;
b) A. S. K. Raj, K. C. Tan, L. Y. Chen, M. J. Cheng, R.
S. Liu. Chem. Sci., 2019, 10, 6437-6442; c) C. C. Lin,
T. M. Teng, A. Odedra, R. S. Liu. J. Am. Chem. Soc.
2007, 129, 3798-3799; d) H. Gao, X. Zhao, Y. Yu, J.
Zhang. Chem. Eur. J. 2010, 16, 456-459; e) H. Gao, X.
Wu, J Zhang. Chem. Eur. J. 2011, 17, 2838-2841; f) T.
M. Teng, R. S. Liu. J. Am. Chem. Soc. 2010, 132,
9298-9300; g) T. M. Teng, A. Das, D. B. Huple, R. S.
Liu. J. Am. Chem. Soc. 2010, 132, 12565-12567.
[5] a) A. B. Cuenca, S. Montserrat, K. M. Hossain, G.
Mancha, A. Lledos, M. S. Mercedes, G. Ujaque, G.
Asensio, Org. Lett. 2009, 11, 4906; b) C. W. Li, K. Pati,
G. Y. Lin, S. M. A Sohel, H. H. Hung, R. S. Liu,
Angew. Chem., Int. Ed. 2010, 49, 9891; c) Y. Wang, L.
Ye, L. Zhang, Chem. Commun. 2011, 47, 7815.
[6] For gold-catalyzed annulation reactions, see selected
reviews: a) A. S. K. Hashmi, G. J. Hutchings. Angew.
Chem. Int. Ed. 2006, 45, 7896-7936; b) X. Zhao, M.
Rudolph, A. S. K. Hashmi. Chem. Commun.. 2019, 55,
12127-12135; c) A. S. K. Hashmi. Acc. Chem. Res.
2014, 47, 864-876; d) A. M. Asiria, A. S. K. Hashmi.
Chem. Soc. Rev. 2016, 45, 4471-4503; e) D. Pflasterer,
A. S. K. Hashmi. Chem. Soc. Rev. 2016, 45, 1331-
1367; f) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008,
108, 3395-3442; g) S. Abu Sohel, R. S. Liu, Chem. Soc.
Rev. 2009, 38, 2269-2281; h) M. E. Muratore, A. Homs,
C. Obradors, A. M. Echavarren, Chem. Asian. J. 2014,
[11] For the [3+2]-imine annulations, the mechanism
proceeds through an independent route, explicitly
through an attack of imine at gold π-alkyne A’ to yield
species B’ that was trapped with a tethered alcohol to
form intermediate C’, and ultimately observed product
5a.
6
This article is protected by copyright. All rights reserved.