Mendeleev Commun., 2015, 25, 415–416
A
Mechanistic studies were supported by the Russian Science
H2O (4 equiv.),
KOH (1.5 equiv.)
DMF, 100 °C, 3 h
Foundation (grant no. 14-50-00126). Authors acknowledge Centre
for Magnetic Resonance, Centre for Chemical Analysis and Mate-
rials Research (St. Petersburg State University). This work was
partially supported by the Russian Foundation for Basic Research
(grant no. 15-33-20536). A.A.K. acknowledges St. Petersburg State
University for postdoctoral fellowship (no. 0.50.1186.2014).
S
n S
CaC2
+
n SH
HS
1 (n = 4), 89%
2 (n = 5), 91%
3 (n = 9), 93%
0.5 equiv.
2 equiv.
B
H2O (4 equiv.),
KOH (1.5 equiv.)
CaC2
+
HetSH
HetS
DMSO, 100 °C, 3 h
4–6
1 equiv.
2 equiv.
References
1 (a) V. P. Ananikov, L. L. Khemchyan, Yu. V. Ivanova, V. I. Bukhtiyarov,
A. M. Sorokin, I. P. Prosvirin, S. Z. Vatsadze, A. V. Medved’ko, V. N.
Nuriev, A. D. Dilman, V. V. Levin, I. V. Koptyug, K. V. Kovtunov,
V. V. Zhivonitko, V. A. Likholobov, A. V. Romanenko, P. A. Simonov,
V. G. Nenajdenko, O. I. Shmatova, V. M. Muzalevskiy, M. S. Nechaev,
A. F. Asachenko, O. S. Morozov, P. B. Dzhevakov, S. N. Osipov,
D. V. Vorobyeva, M. A. Topchiy, M. A. Zotova, S. A. Ponomarenko,
O. V. Borshchev,Yu. N. Luponosov, A. A. Rempel, A. A. Valeeva, A.Yu.
Stakheev, O.V. Turova, I. S. Mashkovsky, S.V. Sysolyatin,V.V. Malykhin,
G. A. Bukhtiyarova, A. O. Terent’ev and I. B. Krylov, Russ. Chem. Rev.,
2014, 83, 885; (b) V. P. Ananikov, ACS Catal., 2015, 5, 1964.
2 K. S. Rodygin and V. P. Ananikov, Green Chem., 2015, DOI: 10.1039/
C5GC01552A.
3 (a) W. H. Pearson, I. Y. Lee, Y. Mi and P. Stoy, J. Org. Chem., 2004, 69,
9109; (b) V. V. Kouznetsov, Tetrahedron, 2009, 65, 2721; (c) A. K. Shaikh,
A. J.A. Cobb and G.Varvounis, Org. Lett., 2012, 14, 584; (d) J. P. Dittami,
X. Y. Nie, H. Nie, H. Ramanathan, C. Buntel, S. Rigatti, J. Bordner, D. L.
Decosta and P. Williard, J. Org. Chem., 1992, 57, 1151; (e) J. H. Rigby,
J.-M. Sage and J. Raggon, J. Org. Chem., 1982, 47, 4815; (f) J. H.
Rigby and J.-M. Sage, J. Org. Chem., 1983, 48, 3591; (g) R. Brückner
and R. Huisgen, Tetrahedron Lett., 1990, 31, 2561.
N
N
N
4 Het =
5 Het =
6 Het =
N
N
N
H
H
Me
58%
91%
89%
Scheme 2
The presence of nitrogen atoms is required for several mate-
rials science applications. To explore the possibility of preparing
N-functionalized monomers we have subjected imidazole and
benzimidazole thiols to the S-vinylation (Scheme 2, B) and
obtained the target sulfides 4–6 in good (58%) to high (89–91%)
yields.‡
To summarize, we have developed an efficient procedure for
the preparation of bis(thiovinyl) derivatives and nitrogen func-
tionalized vinyl sulfides starting from inexpensive calcium carbide
and thiols under simple experimental conditions.
4 B. M. Trost and Y. Tanigawa, J. Am. Chem. Soc., 1979, 101, 4743.
5 B. Kopping, C. Chatgilialoglu, M. Zehnder and B. Giese, J. Org. Chem.,
1992, 57, 3994.
‡
Elemental analysis was carried out using a Euro EA3028-HT apparatus.
HRMS were recorded on a Bruker maXis Q-TOF instrument.
1
1,4-Bis(vinylthio)butane 1. H NMR (400 MHz, CDCl3) d: 1.78 (m,
6 R. M. Moriarty, R. K. Vaid and M. P. Duncan, Synth. Commun., 1987,
4H), 2.72 (m, 4H), 5.11 (d, 2H, J 16.7 Hz), 5.20 (d, 2H, J 10.3 Hz), 6.35
(dd, 1H, J 16.7 Hz, J 10.3 Hz). 13C NMR (100.6 MHz, CDCl3) d: 28.2,
31.0, 111.0, 132.3. MS, m/z (%): 115 (33), 86 (100), 85 (29), 73 (78),
55 (36), 45 (51). Found (%): C, 54.89; H, 8.06. Calc. for C8H14S2 (%):
C, 55.12; H, 8.09.
17, 703.
7 (a) F. A. Davis, R. T. Reddy, W. Han and P. J. Carroll, J. Am. Chem. Soc.,
1992, 114, 1428; (b) G. Glahsl and R. Herrmann, J. Chem. Soc., Perkin
Trans. 1, 1988, 1753; (c) G. E. O’Mahony, A. Ford and A. R. Maguire,
J. Sulfur Chem., 2013, 34, 301.
1
1,5-Bis(vinylthio)pentane 2. H NMR (400 MHz, CDCl3) d: 1.53 (m,
8 (a)J.-G. LiuandM. Ueda, J. Mater. Chem., 2009, 19, 8907;(b)K. Nakabayashi,
Yo. Abiko and H. Mori, Macromol., 2013, 46, 5998; (c) Yo. Abiko,
A. Matsumura, K. Nakabayashi and H. Mori, Polymer, 2014, 55, 6025;
(d) A. Kausar, S. Zulfiqar and M. I. Sarwar, Polym. Rev., 2014, 54, 185.
2H), 1.68 (q, 4H, J 7.4 Hz), 2.70 (t, 4H, J 7.3 Hz), 5.10 (d, 2H, J 16.7 Hz),
5.19 (d, 2H, J 10.2 Hz), 6.35 (dd, 2H, J 16.7 Hz, J 10.2 Hz). 13C NMR
(100.6 MHz, CDCl3) d: 28.1, 28.8, 31.3, 110.8, 132.5. MS, m/z (%): 87
(40), 86 (100), 73 (59), 69 (55), 67 (28), 45 (50), 41 (63). Found (%):
C, 57.27; H, 8.50. Calc. for C9H16S2 (%): C, 57.39; H, 8.56.
1,9-Bis(vinylthio)nonane 3. 1H NMR (400 MHz, CDCl3) d: 1.30 (br.m,
6H), 1.39 (br.m, 4H), 1.64 (q, 4H, J 7.4–7.6 Hz), 2.69 (t, 4H, J 7.3 Hz),
5.10 (d, 2H, J 16.7 Hz), 5.18 (d, 2H, J 10.2 Hz), 6.36 (dd, 2H, J 16.7 Hz,
J 10.2 Hz). 13C NMR (100.6 MHz, CDCl3) d: 29.0, 29.1, 29.3, 29.5,
31.5, 110.5, 132.7. MS, m/z (%): 101 (43), 87 (100), 81 (55), 85 (59), 73
(59), 69 (50), 55 (98). Found (%): C, 63.55; H, 9.84. Calc. for C13H24S2 (%):
C, 63.87; H, 9.90.
2-(Vinylthio)imidazole 4. 1H NMR (400 MHz, CDCl3) d: 5.31 (d, 1H,
J 16.7 Hz), 5.37 (d, 1H, J 9.6 Hz), 6.54 (dd, 1H, J 16.7 Hz, J 9.6 Hz), 7.16
(br.s, 2H). 13C NMR (100.6 MHz, CDCl3) d: 116.2, 124.7 (br.s), 129.7,
137.3. MS, m/z (%): 126 (42), 125 (100), 100 (37), 73 (24), 72 (65), 71
(25), 45 (39), 41 (39), 40 (21). Found (%): C, 47.45; H, 4.75; N, 22.15.
Calc. for C5H6N2S (%): C, 47.59; H, 4.79; N, 22.20.
9 (a) N. K. Gusarova, N. A. Chernysheva, S. V.Yas’ko and B. A. Trofimov,
Russ. Chem. Bull., Int. Ed., 2013, 62, 438 (Izv. Akad. Nauk, Ser. Khim.,
2013, 439); (b) B. A. Trofimov, N. K. Gusarova, A. S. Atavin, S. V.
Amosova, A. V. Gusarov, N. I. Kazantseva and G. A. Kalabin, Zh. Org.
Khim., 1973, 9, 8 (in Russian); (c) A. C. Fernandes and C. C. Romão,
Tetrahedron, 2006, 62, 9650; (d) B. W.Yoo, M. S. Song and M. C. Park,
Synth. Commun., 2007, 37, 3089; (e) E. Abele, O. Dzenitis, K. Rubina
and E. Lukevics, Chem. Heterocycl. Compd. (Engl. Transl.), 2002, 38,
682 (Khim. Geterotsikl. Soedin., 2002, 776); (f) M. L. Conte, S. Pacifico,
A. Chambery, A. Marra and A. Dondoni, J. Org. Chem., 2010, 75, 4644;
(g) A. Kondoh, K. Takami, H. Yorimitsu and K. Oshima, J. Org. Chem.,
2005, 70, 6468; (h) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011,
111, 1596; (i) V. P. Ananikov, N. V. Orlov and I. P. Beletskaya, Russ.
Chem. Bull., Int. Ed., 2005, 54, 576 (Izv. Akad. Nauk, Ser. Khim., 2005,
569); (j) Y. Okimoto, S. Sakaguchi and Ya. Ishii, J. Am. Chem. Soc.,
2002, 124, 1590.
2-Vinylthio-1-methylimidazole 5. 1H NMR (400 MHz, CDCl3) d: 3.66
(s, 3H), 5.14 (d, 1H, J 16.6 Hz), 5.34 (d, 1H, J 9.6 Hz), 6.47 (dd, 1H,
J 16.6 Hz, J 9.6 Hz), 7.02 (s, 1H), 7.12 (s, 1H). 13C NMR (100.6 MHz,
CDCl3) d: 34.6, 115.0, 123.4, 129.6, 130.2, 138.2. MS, m/z (%): 140 (42),
139 (100), 114 (19), 81 (25), 72 (39), 54 (15), 42 (40). MS [ESI-(+MS)],
m/z: 141.0483 [M+H]+ (calc. for C6H8N2S, m/z: 141.0481).
10 N. P. Petukhova, E. N. Prilezhaeva and V. N. Voropaev, Bull. Acad. Sci.
USSR, Div. Chem. Sci., 1972, 21, 911 (Izv. Akad. Nauk SSSR, Ser. Khim.,
1972, 954).
2-(Vinylthio)benzimidazole 6. 1H NMR (400 MHz, CDCl3) d: 5.38 (dd,
1H, J 9.2 Hz, J 1.2 Hz), 5.68 (dd, 1H, J 16.2 Hz, J 1.2 Hz), 7.22–7.29 (m,
3H), 7.46 (dd, 1H, J 16.2 Hz, J 9.2 Hz), 7.50–7.55 (m, 1H). 13C NMR
(100.6 MHz, CDCl3) d: 107.2, 110.4, 110.9, 123.4, 124.1, 129.8, 131.0,
168.3. MS, m/z (%): 176 (52), 175 (100), 150 (23), 122 (19), 118 (22),
91 (17), 90 (16), 63 (21). Found (%): C, 61.16; H, 4.54; N, 15.77. Calc.
for C9H8N2S (%): C, 61.34; H, 4.58; N, 15.90.
Received: 15th September 2015; Com. 15/4733
– 416 –