Journal of the American Chemical Society
Page 6 of 8
1
2
3
4
5
6
7
8
1997, 119, 10547-10548.
10, 625-630. (i) Chen, S.; Wang, Y.; Nie, T.; Bao, C.; Wang, C.; Xu, T.;
(10)
Schalley, C. A.; Beizai, K.; Vögtle, F. On the Way to
Lin, Q.; Qu, D.-H.; Gong, X.; Yang, Y.; Zhu, L.; Tian, H. An Artificial
Molecular Shuttle Operates in Lipid Bilayers for Ion Transport. J. Am.
Chem. Soc. 2018, 140, 17992-17998.
Rotaxane-Based Molecular Motors: Studies in Molecular Mobility
and Topological Chirality. Acc. Chem. Res. 2001, 34, 465-476.
(11)
Kameta, N.; Hiratani, K.; Nagawa, Y. A Novel Synthesis of
(20)
N.; Xiang, J.-F.; He, S.-G.; Chen, C.-F. Stepwise Motion in
Recent examples of other MIMs: (a) Meng, Z.; Wang, L.-
Chiral Rotaxanes via Covalent Bond Formation. Chem. Commun.
2004, 466-467.
a
Multivalent [2](3)Catenane. J. Am. Chem. Soc. 2015, 137, 9739-9745.
(b) Goujon, A.; Lang, T.; Mariani, G.; Moulin, E.; Fuks, G.; Raya, J.;
Buhler, E.; Giuseppone, N. Bistable [c2] Daisy Chain Rotaxanes as
Reversible Muscle-like Actuators in Mechanically Active Gels. J. Am.
Chem. Soc. 2017, 139, 14825-14828. (c) Zhang, Q.; Rao, S.-J.; Xie, T.;
Li, X.; Xu, T.-Y.; Li, D.-W.; Qu, D.-H.; Long, Y.-T.; Tian, H. Muscle-like
Artificial Molecular Actuators for Nanoparticles. Chem 2018, 4, 2670-
2684.
(12)
Makita, Y.; Kihara, N.; Nakakoji, N.; Takata, T.; Inagaki, S.;
Yamamoto, C.; Okamoto, Y. Catalytic Asymmetric Synthesis and
Optical Resolution of Planar Chiral Rotaxane. Chem. Lett. 2007, 36,
162-163.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13)
Gell, C. E.; Mcardle-Ismaguilov, T. A.; Evans, N. H.
Modulating the Expression of Chirality in a Mechanically Chiral
Rotaxane. Chem. Commun. 2019, 55, 1576-1579.
(14)
Bordoli, R. J.; Goldup, S. M. An Efficient Approach to
(21)
For a discussion on the assignment of absolute
Mechanically Planar Chiral Rotaxanes. J. Am. Chem. Soc. 2014, 136,
stereochemistry of mechanically planar chiral rotaxanes, see ref. [6]
and: Reuter, C.; Mohry, A.; Sobanski, A.; Vögtle, F. [1]Rotaxanes and
Pretzelanes: Synthesis, Chirality, and Absolute Configuration. Chem.
Eur. J. 2000, 6, 1674-1682.
4817-4820.
(15)
Jinks, M. A.; de Juan, A.; Denis, M.; Fletcher, C. J.; Galli,
M.; Jamieson, E. M. G.; Modicom, F.; Zhang, Z.; Goldup, S. M.
Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes.
Angew. Chem. Int. Ed. 2018, 57, 14806-18410.
(22)
Shuttle. J. Am. Chem. Soc. 1991, 113, 5131-5133.
(23) Jennings, W. B. Chemical Shift Nonequivalence in
Prochiral Groups. Chem. Rev. 1975, 75, 307-322.
(24) Similar molecular examples: (a) Egan, W.; Tang, R.; Zon,
Anelli, P. L.; Spencer, N.; Stoddart, J. F. A Molecular
(16)
(a) Kameta, N.; Nagawa, Y.; Karikomi, M.; Hiratani, K.
Chiral Sensing for Amino Acid Derivative Based on a [2]Rotaxane
Composed of an Asymmetric Rotor and an Asymmetric Axle. Chem.
Commun. 2006, 3714-3716. (b) Ishiwari, F.; Nakazono, K.; Koyama,
Y.; Takata, T. Induction of Single-Handed Helicity of Polyacetylenes
Using Mechanically Chiral Rotaxanes as Chiral Sources. Angew.
Chem. Int. Ed. 2017, 56, 14858-14862. (c) Hirose, K.; Ukimi, M.; Ueda,
S.; Onoda, C.; Kano, R.; Tsuda, K.; Hinohara, Y.; Tobe, Y. The
Asymmetry is Derived from Mechanical Interlocking of Achiral Axle
and Achiral Ring Components
Optically Pure [2]Rotaxanes. Symmetry 2018, 10, 20.
(17) Mochizuki, Y.; Ikeyatsu, K.; Mutoh, Y.; Hosoya, S.; Saito,
S. Synthesis of Mechanically Planar Chiral rac-[2]Rotaxanes by
Partitioning of an Achiral [2]Rotaxane: Stereoinversion Induced by
Shuttling. Org. Lett. 2017, 19, 4347-4350.
G.; Mislow, K. Low Barrier to Pyramidal Inversion in Phospholes.
Measure of Aromaticity. J. Am. Chem. Soc. 1970, 92, 1442-1444. (b)
Anet, F. A. L.; Jochims, J. C.; Bradley, C. H. Energy Barrier of
Racemization in Diisopropylcarbodiimide. J. Am. Chem. Soc. 1970,
92, 2557-2558.
(25)
(a) Hua, Y.; Flood, A. H. Click Chemistry Generates
–
Syntheses and Properties of
Privileged CH Hydrogen-bonding Triazoles: The Latest Addition to
Anion Supramolecular Chemistry. Chem. Soc. Rev. 2010, 39, 1262-
1271. (b) Evans, N. H.; Beer, P. D. Advances in Anion Supramolecular
Chemistry: From Recognition to Chemical Applications. Angew.
Chem. Int. Ed. 2014, 53, 11716-11754.
(26)
Morrow, S. M.; Bissette, A. J.; Fletcher, S. P. Transmission
(18)
(a) Coutrot, F.; Busseron, E.
A
New Glycorotaxane
of Chirality Through Space and Across Length Scales. Nat.
Nanotechnol. 2017, 12, 410-419.
Molecular Machine Based on an Anilinium and a Triazolium Station.
Chem. Eur. J. 2008, 14, 4784-4787. (b) Coutrot, F. A Focus on
Triazolium as a Multipurpose Molecular Station for pH-Sensitive
Interlocked Crown-Ether-Based Molecular Machines, ChemistryOpen
2015, 4, 556-576.
(27)
TRISPHAT
=
[Tris(tetrachlorobenzenediolato)
phosphate(V)]. For its use as a chiral shift reagent, see: Lacour, J.;
Ginglinger, C.; Favarger, F.; Torche-Haldimann, S. Application of
TRISPHAT anion as NMR chiral shift reagent. Chem. Commun. 1997,
2285-2286.
(19)
Recent examples of rotaxanes: (a) Yang, W.; Li, Y.; Zhang,
J.; Yu, Y.; Liu, T.; Liu, H.; Li, Y. Synthesis of a [2]Rotaxane Operated
in Basic Environment. Org. Biomol. Chem. 2011, 9, 6022-6026. (b)
Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.;
Nussbaumer, A. L.
Organocatalyst That Utilizes an Acyclic Chiral Secondary Amine. J.
Am. Chem. Soc. 2014, 136, 4905-4908. (c) Meng, Z.; Xiang, J.-F.;
Chen, C.-F. Directional Molecular Transportation Based on
Catalytic Stopper-Leaving Rotaxane System. J. Am. Chem. Soc.
2016, 138, 5652-5658. (d) Ragazzon, G.; Credi, A.; Colasson, B.
Thermodynamic Insights on
Molecular Shuttle with Strongly Shifted Co-conformational
Equilibria. Chem. Eur. J. 2017, 23, 2149-2156. (e) Erbas-Cakmak, S.;
Fielden, S. D. P.; Karaca, U.; Leigh, D. A.; McTernan, C. T.; Tetlow, D.
J.; Wilson, M. R. Rotary and Linear Molecular Motors Driven by
Pulses of a Chemical Fuel. Science 2017, 358, 340-343. (f) Waeles, P.;
Fournel-Marotte, K.; Coutrot, F. Distinguishing Two Ammonium and
(28)
The solvent was changed from CD2Cl2 to toluene-d8 in
order to favor ion pairing and thus enhance chiral shift effects on the
signals. The 1H NMR spectra of 12+·2I– in toluene-d8 are consistent
with those in CD2Cl2.
A Switchable [2]Rotaxane Asymmetric
(29)
See, e.g.: (a) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A.
Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane. J.
Am. Chem. Soc. 2016, 138, 1749-1751. (b) Eichstaedt, K.; Jaramillo-
Garcia, J.; Leigh, D. A.; Marcos, V.; Pisano, S.; Singleton, T. A.
Switching between Anion-Binding Catalysis and Aminocatalysis with
a Rotaxane Dual-Function Catalyst. J. Am. Chem. Soc. 2017, 139,
9376-9381. (c) Lim, J. Y. C.; Marques, I.; Felix, V.; Beer, P. D.
Enantioselective Anion Recognition by Chiral Halogen-Bonding
[2]Rotaxanes. J. Am. Chem. Soc. 2017, 139, 12228-12239.
(30) See, e.g., ref. 19i and: (a) Li, J.; Li, Y.; Guo, Y.; Xu, J.; Lv, J.;
Li, Y.; Liu, H.; Wang, S.; Zhu, D. A Novel Supramolecular System:
Combination of Two Switchable Processes in a [2]Rotaxane. Chem.
Asian J. 2008, 3, 2091-2096. (b) Iwamoto, H.; Yawata, Y.; Fukazawa,
Y.; Haino, T. Highly Efficient Synthesis of [3]Rotaxane Assisted by
Preorganisation of Pseudorotaxane Using bis(Crown Ether)s.
Supram. Chem. 2010, 22, 815-826. (c) Wang, X.-Y.; Han, J.-M.; Pei, J.
Energy Trabfer and Concentration-Dependent Conformational
Modulation: A Porpyrin-Containing [3]Rotaxane. Chem. Asian J.
a
a Bistable Acid–Base Switchable
Triazolium Sites of Interaction in
a Three-Station [2]Rotaxane
Molecular Shuttle. Chem. Eur. J. 2017, 23, 11529-11539. (g) Ghosh,
A.; Paul, I.; Adlung, M.; Wickleder, C.; Schmittel, M. Oscillating
Emission of [2]Rotaxane Driven by Chemical Fuel. Org. Lett. 2018,
20, 1046-1049. (h) Zhu, K.; Baggi, G.; Loeb, S. J. Ring-Through-Ring
Molecular Shuttling in a Saturated [3]Rotaxane. Nat. Chem. 2018,
6
ACS Paragon Plus Environment