Please d Co h ne omt Ca do j mu s mt margins
Page 4 of 4
COMMUNICATION
Journal Name
fluorescence signals were observed from the dissected tumor
tissues of the mice injected with COX-2 positive cells (HeLa
and HepG2). The fluorescent signal was significantly enhanced
up to 4.3 ± 0.1 (HeLa) and 3.8 ± 0.4 (HepG2) folds, compared
to the COX-2 negative tumors (HCT 116). These data clearly
(b) J. Zhang, Z.-F. Yuan, Y. Wang, W.-H
Cheng, R.-X. Zhuo and X.-Z. Zhang, J. Am. Chem. Soc., 2013, 135
5068; (c) K. Y. Choi, M. Swierczewska, S. Lee and X. Chen,
Theranostics, 2012, , 156; (d) M. H. Lee, J. L. Sessler and J. S. Kim,
DOI: 10.10 /C6CC04 5D
. Chen, G3 9. -F. Luo, S2 5. -X.
,
2
Acc. Chem. Res., 2015, 48, 2935.
6
7
.
.
R. S. Seller, Z. A. Radi and N. K. Khan, Vet. Pathol., 2010, 47, 601.
(a) M. M. Taketo, J. Natl. Cancer Inst., 1998, 90, 1609; (b) Z. Khan,
N. Khan, R. P. Tiwari, N. K. Sah, G. Prasad and P. S. Bisen, Current
Drug Targets, 2011, 12, 1082; (c) Z. Mao, M. Wang, J. Liu, L.-J. Liu,
demonstrate the ability of
1 in targeting COX-2 overexpressed
tumor more adequately over the COX-2 negative tissues.
In conclusion, we present here a preliminary results of first
indomethacin-guided drug delivery conjugate (IGDDC) for
selective delivery of therapeutic agent to the malignant cancer
cells exhibiting higher levels of COX-2, HDAC and CTSL
activities. Our results demonstrated the possibility of NSAID as
a guiding unit for cancer-targeting drug delivery system
together with HDAC and CTSL-driven drug release mechanism.
Further studies to explore the dose-dependent tumor growth
inhibition, cellular uptake mechanism, the possible synergistic
effect of NSAID with anticancer drug as a combinational
therapeutic approach against cancer are in progress.
S. M.-Y. Lee, C.-H. Leung and D.-L. Ma, Chem. Commun., 2016, 52
450; (d) W. Wang, Z. Mao, M. Wang, L.-J. Liu, D. W. J. Kwong,
C.-H. Leung and D.-L. Ma, Chem. Commun., 2016, 52, 3611.
,
4
8
.
(a) M. J. Uddin, B. C. Crews, A. L. Blobaum, P. J. Kingsley, D. L.
Gorden, J. O. McIntyre, L. M. Matrisian, K. Subbaramaiah, A. J.
Dannenberg, D. W. Piston and L. J. Marnett, Cancer Res., 2010, 70
618; (b) H. Zhang, J. Fan, J. Wang, B. Dou, F. Zhou, J. Cao, J. Qu,
Z. Cao, W. Zhao and X. Peng, J. Am. Chem. Soc., 2013, 135, 17469;
c) D. Zhi, S. Zhang, S. Cui, Y. Zhao, Y. Wang and D. Zhao, Bioconj.
,
3
(
Chem., 2013, 24, 712.
9
1
.
W. T. Godbey and A. Atala, Gene Therapy, 2003, 10, 1519.
0. I. Gregoretti, Y.-M. Lee and H. V. Goodson, J. Mol. Biol., 2004, 338
7.
1. M. A. Glozaka and E. Seto, Oncogene, 2007, 26, 5420.
2. (a) M. Haberland, A. Johnson, M. H. Mokalled, R. L. Montgomery
and E. N. Olson, Proc.Natl. Acad. Sci. U.S.A., 2009, 106, 7751; (b) A.
Villagra, E. M. Sotomayor and E. Seto, Oncogene, 2010, 29, 157.
3. (a) P. A. Marks and W.-S. Xu, J. Cell. Biochem., 2009, 107, 600; (b)
B. E. Gryder, Q. H. Sodji and A. K. Oyelere, Future Med. Chem.,
,
This work was supported by CRI (No. 2009-0081566, JSK), NRF
No. 2015R1A5A1037656, CK), the Basic Science Research
Program (No. 20100020209, CK) project grants from the National
Research Foundation of Korea.
1
(
1
1
1
Notes and references
2
012, 4, 505; (c) J. Hrabeta, M. Stiborova, V. Adam, R. Kizek and T.
1
.
(a) J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T.
Järvinen and J. Savolainen, Nat. Rev. Drug Discov., 2008, , 255; (b)
M. E. Davis, Z. Chen and D. M. Shin, Nat. Rev. Drug Discov., 2008,
, 771.
Eckschlager, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech
Repub., 2014, 158, 16; (d) J. M. Wagner, B. Hackanson, M. Lubbert
7
and M. Jung, Clin. Epigenet., 2010,
Peart and R. W. Johnstone, Nat. Rev. Drug Discov., 2006,
1
, 117; (e) J. E. Bolden, M. J.
, 769.
7
5
2
.
(a) M. J. Akhtar, M. Ahamed, H. A. Alhadlaq, S. A. Alrokayan and S.
Kumar, Clinica. Chimic Acta, 2014, 436, 78; (b) A. M. Scott, J. D.
Wolchok and L. J. Old, Nat. Rev. Cancer, 2012, 12, 278; (c) J. C.
Reubi, Endocrine Rev., 2003, 24, 389; (d) J. Liu, Y. Huang, A.
Kumar, A. Tan, A. Jin, A. and X.-J. Liang, Biotechnology Adv., 2014,
1
1
4. J. A. Joyce, A. Baruch, K. Chehade, N. Meyer-Morse, E. Giraudo, F.-
Y. Tsai, D. C. Greenbaum, J. H. Hager, M. Bogyo and D. Hanahan,
Cancer Cell, 2004, 5, 443.
5. (a) V. Gocheva, W. Zeng, D. Ke, D. Klimstra, T. Reinheckel, C.
Peters, D. Hanahan and J. A. Joyce, Genes Dev., 2006, 20, 543; (b) M.
Verdoes, K. O. Bender, E. Segal, W. A. Linden, S. Syed, N. P.
32, 693; (e) M. H. Lee, J. H. Han, J. Y. Kim, S. Bhuniya, J. L. Sessler,
C. Kang and J. S. Kim, J. Am. Chem. Soc., 2012, 134, 12668; (f) S.
Maiti, N. Park, J. H. Han, H. M. Jeon, J. H. Lee, S. Bhuniya, C. Kang
and J. S. Kim, J. Am. Chem. Soc., 2013, 153, 4567; (g) Y. Zhong, F.
Meng, C. Deng and Z. Zhong, Biomacromolecules, 2014, 15, 1955;
Withana, L. E. Sanman and M. Bogyo, J. Am. Chem. Soc., 2013, 135
,
,
1
7
4726; (c) Y. Tian, G. S. Bova and H. Zhang, Anal. Chem., 2011, 83
013; (d) B. Goulet, L. Sansregret, L. Leduy, M. Bogyo, E. Weber, S.
, 899; (e) J. M.
S. Chauhan and A. Nepveu, Mol. Cancer Res., 2007,
5
(h) W. Liao, T. Lai, L. Chen, J. Fu, S. T. Sreenivasan, Z. Yu and J.
Lankelma, D. M. Voorend, T. Barwari, J. Koetsveld, A. H. Van der
Spek, A. P. N. A. De Porto, G. Van Rooijen and C. J. F. Van
Noorden, Life Sci., 2010, 86, 225.
Ren, J. Agric. Food Chem., 2016, 64, 1509; (i) Z. Yu, R. M.
Schmaltz, T. C. Bozeman, R. Paul, M. J. Rishel, K. S. Tsosie and S.
M. Hecht, J. Am. Chem. Soc., 2013, 135, 2883; (j) X. Wei, J. Gao, C.
Zhan, C. Xie, Z. Chai, D. Ran, M. Ying, P. Zheng and W. Lu, J.
Control Release, 2015, 28, 13; (k) W. S. Shin, J. Han, R. Kumar, G.
1
6. (a) N. Ueki, S. Lee, N. S. Sampson and M. J. Hayman, Nat. Commun.,
2
013, 4, 2735; (b) D. Wegener, F. Wirsching, D. Riester and A.
Schwienhorst, Chem. Biol. 2003, 10, 61.
G. Lee, J. L. Sessler, J.-H. Kim and J. S. Kim, Sci. Rep., 2016, 6
9018; (l) W. S. Shin, J. Han, P. Verwilst, R. Kumar, J.-H. Kim and J.
S. Kim, Bioconj. Chem., 2016, 27, 1419.
,
1
1
1
7. M. S. Bjelaković, D. M. Godjevac and D. R. Milić, Carbon, 2007, 45,
2
2
260.
8. D. Wegener, F. Wirsching, D. Riester and A. Schwienhorst, Chem.
Biol., 2003, 10, 61.
9. (a) B. Chen, Z.-H. Hou, Z. Dong and C.-D. Li, Biomed. Res. Int.,
3
4
.
.
(a) S. Park, E. Kim, W. Y. Kim, C. Kang and J. S. Kim, Chem.
Commun., 2015, 51, 9343; (b) J. Dai, Q. Li, W. Liu, S. Lin, Y. Hao,
C. Zhang and X. Shuai, Chem. Commun., 2015, 51, 9682; (c) J. Su, F.
Chen, V. L. Cryns and P. H. Messersmith, J. Am. Chem. Soc., 2011,
2
015, DOI 10.1155/2015/829513; (b) S. T. Palayoor, M. J.
Arayankalayil, A. Shoaibi and C. N. Coleman, Clin. Cancer Res.,
005, 11, 6980; (c) N. B. Liu, T. Peng, C. Pan, Y. Y. Yao, B. Shen
and J. Leng, World J. Gastroenterol., 2005, 11, 6281; (d) B. Agarwal,
P. Swaroop, P. Protiva, S. V. Raj, H. Shirin and P. R. Holt, Apoptosis,
003, , 649; (e) E. L. Deer, J. González-Hernández, J. D. Coursen, J.
1
33, 11850; (d) Q. Duan, Y. Cao, Y. Li, X Hu, T. Xiao, C. Lin, Y.
2
Pan and L. Wang, J. Am. Chem. Soc., 2013, 135, 10542.
(a) D. S. Wilson, G. Dalmasso, L. X. Wang, S. V. Sitaraman, D.
Merlin and N. Murthy, Nat. Mater., 2010, 9, 923; (b) M. K. Gupta, J.
R. Martin, T. A. Werfel, T. Shen, J. M. Page and C. L. Duvall, J. Am.
Chem. Soc., 2014, 136, 14896; (c) R. Kumar, J. Han, H.-J. Lim, W. X.
Ren, J.-Y. Lim, J.-H. Kim and J. S. Kim, J. Am. Chem. Soc., 2014,
2
8
E. Shea, J. Ngatia, C. L. Scaife, M. A. Firpo and S. J. Mulvihill,
Pancreas, 2010, 39, 425; (f) M. Tsujii, S. Kawano and R. N. DuBois,
Proc. Natl. Acad. Sci. U.S.A., 1997, 94, 3336.
1
36, 17836; (d) C. Lux, G. de, S. Joshi-Barr, T. Nguyen, E.
Mahmoud, E. Schopf, N. Formina and A. Almutairi, J. Am. Chem.
Soc., 2012, 134, 15758; (e) E.-J. Kim, S. Bhuniya, H. Lee, H. M. Kim,
C. Cheong, S. Maiti, K. S. Hong and J. S. Kim, J. Am. Chem. Soc.,
2
014, 136, 13888.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins