ChemComm
Communication
P450-BM3 which ensure high degrees of regio- and stereoselectivity.
This strategy is also successful in the oxidative hydroxylation of
indane and tetralin, an approach which is currently not possible
using chiral synthetic CH-activating transition metal catalysts.8
Financial support by the Max-Planck-Society and the Arthur
C. Cope foundation is gratefully acknowledged.
Scheme 2 CH-activating oxidative hydroxylation of indane (5a) and
tetralin (5b).
Notes and references
1 L. Liu, W. Li, K. Koike, S. Zhang and T. Nikaido, Chem. Pharm. Bull.,
2004, 52, 566–569, and references therein.
2 Q. Liu, P. Zhao, X.-C. Li, M. R. Jacob, C.-R. Yang and Y.-J. Zhang,
Helv. Chim. Acta, 2010, 93, 265–271.
3 (a) H. Ito, T. Okuda, T. Fukuda, T. Hatano and T. Yoshida, J. Agric.
Food Chem., 2007, 55, 672–679; (b) F.-S. Li, J. Shen and G.-S. Tan,
Chin. Tradit. Pat. Med., 2007, 29, 1490.
4 C.-K. Woo and M. Bodil Van Niel, US pat., 0143914 A1, 2013.
5 Compound 2a has been prepared by catalytic desymmetrization of meso-
1,4-dihydroxytetralin using chiral Pd- or Ir-catalysts: (a) E. M. Ferreira and
B. M. Stoltz, J. Am. Chem. Soc., 2001, 123, 7725–7726; (b) T. Suzuki,
K. Ghozati, T. Katoh and H. Sasai, Org. Lett., 2009, 11, 4286–4288.
6 Reviews of P450 monooxygenases: (a) P. R. Ortiz de Montellano,
Cytochrome P450: Structure, Mechanism, and Biochemistry, Springer,
Berlin, 3rd edn, 2005; (b) E. M. Isin and F. P. Guengerich, Biochim.
Biophys. Acta, Gen. Subj., 2007, 1770, 314–329; (c) P. R. Ortiz de
Montellano, Chem. Rev., 2010, 110, 932–948; (d) C. J. C. Whitehouse,
S. G. Bell and L.-L. Wong, Chem. Soc. Rev., 2012, 41, 1218–1260;
¨
(e) E. O’Reilly, V. Kohler, S. L. Flitsch and N. J. Turner, Chem.
Commun., 2011, 47, 2490–2501; ( f ) R. Fasan, ACS Catal., 2012, 2,
647–666; (g) Y. Khatri, F. Hannemann, M. Girhard, R. Kappl,
A. Meme, M. Ringle, S. Janocha, E. Leize-Wagner, V. B. Urlacher
and R. Bernhardt, Biotechnol. Appl. Biochem., 2013, 60, 18–29;
(h) F. Hollmann, D. Holtmann, M. W. Fraaije, D. J. Opperman and
I. W. C. E. Arends, Chem. Commun., 2014, DOI: 10.1039/C3CC49747J.
Fig. 1 Structure obtained from an unrestrained molecular dynamics simulation
of 1-tetralone (1a) in WT P450-BM3 (after 34 940 ps). The O–H distance
between the ferryl oxygen of compound I and the pro-S hydrogen attached
to C4 of 1-tetralone is highlighted by the blue dashed line. The F87 and A328
residues are also highlighted in yellow stick form.
7 Selected examples of protein engineering of P450 enzymes10
:
(a) Y. Yang, J. Liu and Z. Li, Angew. Chem., Int. Ed., 2014, 53,
3120–3124; (b) F. Bru¨hlmann, L. Fourage, L. Jeckelmann, C. Dubois
and D. Wahler, J. Biotechnol., 2014, 184, 17–26; (c) B. M. A. van Vugt-
Lussenburg, M. C. Damsten, D. M. Maasdijk, N. P. E. Vermeulen and
J. N. M. Commandeur, Biochem. Biophys. Res. Commun., 2006, 346,
810–818; (d) S. T. Jung, R. Lauchli and F. H. Arnold, Curr. Opin.
Biotechnol., 2011, 22, 809–817; (e) W. L. Tang, Z. Li and H. Zhao,
Chem. Commun., 2010, 46, 5461–5463; ( f ) P. R. Ortiz de Montellano,
Chem. Rev., 2010, 110, 932–948; (g) V. B. Urlacher and M. Girhard,
Trends Biotechnol., 2012, 30, 26–36; (h) K. L. Tee and U. Schwaneberg,
Comb. Chem. High Throughput Screening, 2007, 10, 197–217;
(i) H. Venkataraman, S. B. A. de Beer, L. A. H. van Bergen, N. van
Essen, D. P. Geerke, N. P. E. Vermeulen and J. N. M. Commandeur,
ChemBioChem, 2012, 13, 520–523; ( j) J. C. Lewis, S. M. Mantovani,
Y. Fu, C. D. Snow, R. S. Komor, C. H. Wong and F. H. Arnold,
ChemBioChem, 2010, 11, 2502–2505; (k) K. Zhang, S. E. Damaty and
R. Fasan, J. Am. Chem. Soc., 2011, 133, 3242–3245.
and the pro-(S) hydrogen at C4 is the favored atom to undergo
abstraction (Fig. 1).
In order to understand the unexpected switch in enantio-
selectivity when subjecting 6-methoxy-1-tetralone (1b) to hydroxyla-
tion, we performed analogous docking experiments. In this case the
highest-ranking docking pose was observed where the pro-4(R)
hydrogen is in a reactive position. In this position, the tetralone is
flipped over (relative to the position of substrate 1a) such that the
phenyl group (and methoxy substituent) points towards the I-helix.
An additional docking pose was found in which the phenyl group
points away from the I-helix and the pro-4(S) hydrogen was closest to
the heme, however the calculated binding affinity was less favorable
for this position (by 0.5 kcal molÀ1). 7-Methoxytetralone (1c) was also
docked into the WT crystal structure. Two binding poses were
observed of equivalent binding affinity, corresponding to abstraction
of the pro-4(S) and pro-4(R) hydrogen atoms. This finding is
consistent with the poor observed enantioselectivity for substrate
1c in the WT enzyme.
8 Synthetic transition metal catalysts for CH-activating oxidative
hydroxylation: (a) T. Newhouse and P. S. Baran, Angew. Chem., Int. Ed.,
2011, 50, 3362–3374; (b) M. C. White, Science, 2012, 335, 807–809;
(c) S. R. Neufeldt and M. S. Sanford, Acc. Chem. Res., 2012, 45,
936–946; (d) E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleiss,
¨
R. Glaser, W.-D. Einicke, G. A. Sprenger, U. Beifuß, E. Klemm,
C. Liebner, H. Hieronymus, S.-F. Hsu, B. Plietker and S. Laschat,
ChemCatChem, 2013, 5, 82–112.
9 (a) L. O. Narhi and A. J. Fulco, J. Biol. Chem., 1986, 261, 7160–7169;
(b) A. W. Munro, D. J. Leys, K. J. McLean, K. R. Marshall, T. W. B. Ost,
S. Daff, C. S. Miles, S. K. Chapman, D. A. Lysek, C. C. Moser, C. C. Page
and P. L. Dutton, Trends Biochem. Sci., 2002, 27, 250–257; (c) T. Jovanovic,
R. Farid, R. A. Friesner and A. E. McDermott, J. Am. Chem. Soc., 2005,
127, 13548–13552; (d) K. H. Clodfelter, D. J. Waxman and S. Vajda,
Biochemistry, 2006, 45, 9393–9407; (e) U. Schwaneberg, A. Sprauer,
C. Schmidt-Dannert and R. D. Schmid, J. Chromatogr. A, 1999, 848,
149–159.
In summary, we have developed an efficient biocatalytic one-step
access to 4-hydroxy derivatives of 1-tetralone, many of which are
important building blocks in the synthesis of biologically active
natural products and therapeutic drugs. The approach described
herein involves CH-activating oxidative hydroxylation of readily
available 1-tetralone derivatives, catalysed by evolved mutants of
10 (a) S. Kille, F. E. Zilly, J. P. Acevedo and M. T. Reetz, Nat. Chem.,
2011, 3, 738–743; (b) R. Agudo, G.-D. Roiban and M. T. Reetz,
14312 | Chem. Commun., 2014, 50, 14310--14313
This journal is ©The Royal Society of Chemistry 2014