DOI: 10.1039/C5CC03915K
ChemComm
without an AATT site (w/o AATT) gave only a modest yield of
the alkylated product.
Promotion of Science (JSPS). This work was also supported in
55 part by the Management Expenses Grants National Universities
Corporations from the Ministry of Education, Science, Sports and
Culture of Japan (MEXT).
14
5
0
5
0
5
(A)
DNA concentration
0 M
(B)800
700
600
500
400
300
200
2
Notes and references
700
600
500
400
300
200
a
60 Institute of Multidisciplinary Research for Advanced Materials, Tohoku
University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan. Tel:
+81-22-217-5633; E-mail: nagatugi@tagen.tohoku.ac.jp
0 M
1
1
2
2
100
0
100
0
†
Electronic Supplementary Information (ESI) available: [details of any
360
400
440
480
0
0.5
1
1.5
2
65 supplementary information available should be included here]. See
DOI: 10.1039/b000000x/
Wavelength(nm)
DNA concentration (M)
Fig.6. (A) Changes in fluorescence spectra of 14 (0.1M) in 50 mM MES (pH 7.0),
00 mM NaCl with increasing duplex DNA (AP0bp) concentration. (B) Changes in
1
fluorescence intensity at 450 nm are plotted versus the DNA concentration.
1. D. Fu, J. A. Calvo and L. D. Samson, Nature Reviews Cancer, 2012,
1
2, 104.
Interestingly, the alkylated product was nearly absent in the
duplex DNA containing the Hoechst binding site (AATT) at the
' side of the target base in the fluorescein-labelled strand
7
7
8
8
9
0
5
0
5
0
2. K. W. Wellington, Rsc Advances, 2015, 5, 20309.
3
.
M. P. McCrane, M. A. Hutchinson, O. Ad and S. E. Rokita, Chem.
Res. Toxicol., 2014, 27, 1282
3
(
Rev.AP). For the non-reactive Hoechst-AVP derivative (14) that
4. D. Verga, M. Nadai, F. Doria, C. Percivalle, M. Di Antonio, M.
Palumbo, S. N. Richter and M. Freccero, J. Am. Chem. Soc., 2010,
132, 14625.
was prepared by a route described in the supporting information,
the binding constants to duplex DNA targets were determined
by fluorescence titrations. Fig. 6 shows the change in the
fluorescence spectra of 14 with increasing concentrations of
duplex AP-site-containing DNA. The binding constants were
obtained by analysis of the titration curve (Table 1).
5
.
R. C. Spitale, P. Crisalli, R. A. Flynn, E. A. Torre, E. T. Kool and H.
Y. Chang, Nature Chem. Biol., 2013, 9, 18.
S. Kellner, L. B. Kollar, A. Ochel, M. Ghate and M. Helm, Plos One,
2013, 8.
6
.
7. R. K. Singh, D. N. Prasad and T. R. Bhardwaj, Med. Chem. Res.,
015, 24, 1534
8
2
Table 1 Binding constants of 14 to duplex DNA
.
K. M. Johnson, Z. D. Parsons, C. L. Barnes and K. S. Gates, J. Org.
Chem., 2014, 79, 7520
8
-1
8
-1
DNA
Ks 10 M
DNA
AP3bp
Ks 10 M
AP0bp
3.0
2.3
2.1
3.0
3.3
9. W. B. Chen, Y. Y. Han and X. H. Peng, Chem. Eur. J., 2014, 20, 741
10. J. Wu, R. Huang, T. L. Wang, X. Zhao, W. Y. Zhang, X. C. Weng, T.
Tian and X. Zhou, Org. Biomol. Chem., 2013, 11, 2365
AP1bp
AP2bp
Rev.AP
w/oAATT
weak
1
1. Y. Y. Kuang, K. Baakrishnan, V. Gandhi and X. H. Peng, J. Am.
Chem. Soc. 2011, 133, 19278.
Values were obtained by a non-linear least squares data analysis.
The non-reactive Hoechst-AVP derivative (14) exhibited the
similar binding constants for duplex DNA, AP0~3bp and Rev.AP,
indicating that the binding affinity of 14 did not depend on the
location of the Hoechst binding site (AATT) in the target DNA.
Taken together, the efficient reactivity of the Hoechst-AVP
derivative (4) required appropriate positioning of the AVP moiety
for interaction with the thymine opposite the AP site.
12. L. Guan and M. D. Disney, Angew. Chem. Int. Ed., 2013, 52, 10010.
13. K. Tishinov, K. Schmidt, D. Haussinger and D. G. Gillingham,
Angew. Chem. Int. Ed., 2012, 51, 12000.
1
4. R. I. McDonald, J. P. Guilinger, S. Mukherji, E. A. Curtis, W. I. Lee
3
0
and D. R. Liu, Nature Chem. Biol., 2014, 10, 1049.
15. S. Hagihara, S. Kusano, W. C. Lin, X. G. Chao, T. Hori, S. Imoto and
95
F. Nagatsugi, Bioorg. Med. Chem. Lett., 2012, 22, 3870.
6. S. Hagihara, W. C. Lin, S. Kusano, X. G. Chao, T. Hori, S. Imoto and
F. Nagatsugi, Chembiochem, 2013, 14, 1427
7. N. B. Sankaran, S. Nishizawa, T. Seino, K. Yoshimoto and N.
Teramae, Angew. Chem. Int. Ed., 2006, 45, 1563
1
1
Conclusions
1
1
1
1
00 18. M. Li, Y. Sato, S. Nishizawa, T. Seino, K. Nakamura and N. Teramae,
J. Am. Chem. Soc. , 2009, 131, 2448
19. Y. Sato, S. Nishizawa, K. Yoshimoto, T. Seino, T. Ichihashi, K.
Morita and N. Teramae, Nucl. Acids Res., 2009, 37, 1411
3
4
4
5
5
0
5
0
In conclusion, we have developed a strategy for the selective
alkylation of DNA using single-stranded DNA containing an
abasic site and an alkylating probe. The Hoechst-AVP probe
exhibited high selectivity and efficient reactivity to thymine bases
at the site opposite an abasic site in DNA. In addition, the primer
extension reaction with polymerase was stopped at the alkylated
site by the Hoechst-AVP probe. These results suggested that
Hoechst-AVP probe may exert inhibitory effects on DNA
replication. Our studies provide the proof-of concept that AVP
derivatives conjugated with DNA binding molecules might form
hydrogen bonds with target nucleobases located in a hydrophobic
pocket and induce the selective alkylation. Based on the concept,
the investigations of the probes for inducing selective alkylation
in other hydrophobic pockets are now in progress.
2
0. Y. Sato, T. Ichihashi, S. Nishizawa and N. Teramae, Angew. Chem.
Int. Ed., 2012, 51, 6369
1. Y. Sato, M. Kudo, Y. Toriyabe, S. Kuchitsu, C.-X. Wang, S.
Nishizawa and N. Teramae, Chem. Commun., 2014, 50, 515
05
2
22. Y. Abe, O. Nakagawa, R. Yamaguchi and S. Sasaki, Bioorg. Med.
Chem., 2012, 20, 3470.
10 23. N. H. Hopcroft, A. L. Brogden, M. Searcey and C. J. Cardin, Nucl.
Acids Res., 2006, 34, 6663
2
4. L. A. Howell, R. Gulam, A. Mueller, M. A. O'Connell and M. Searcey,
Bioorg. Med. Chem. Lett., 2010, 20, 6956
25. G. R. Clark, D. W. Boykin, A. Czarny and S. Neidle, Nucl. Acids Res.,
1997, 25, 1510
2
15
6. I. Haq, J. E. Ladbury, B. Z. Chowdhry, T. C. Jenkins and J. B.
Chaires, J. Mol. Biol., 1997, 271, 244.
7. D. B. Yu-H. Ji, W. Häsler, V. R. Schmitt, A. Dorn, C. Bailly, M. J.
Waring, R. Hochstrasser, W. Leupin, Bioorg. Med. Chem., 2001, 9,
2905
8. M. Tanada, S. Tsujita and S. Sasaki, J. Org. Chem., 2006, 71, 125.
9. B. Singr, M. Kroger and M. Carrano, Biochemistry, 1978, 17, 1246.
0. J. T. Kusmierek and B. Singer, Nucl. Acids Res., 1976, 3, 989.
2
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas (“Chemical Biology of Natural 120
Products: Target ID and Regulation of Bioactivity”) and a Grant-
in-Aid for Scientific Research (B) from the Japan Society for the
2
2
3
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]