Syn th esis of 3-Alk oxyca r bon yl-1â-m eth ylca r ba p en em by Usin g th e
P a lla d iu m -Ca ta lyzed C-N Bon d -F or m in g Rea ction betw een Vin yl
Ha lid e a n d â-La cta m Nitr ogen
Yuji Kozawa and Miwako Mori*
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, J apan
mori@pharm.hokudai.ac.jp
Received September 4, 2002
3-Alkoxycarbonyl-1â-methylcarbapenem could be synthesized by using a palladium-catalyzed C-N
bond-forming reaction between vinyl halide and â-lactam nitrogen. In this reaction, the use of Pd-
(OAc)2 and DPEphos gave a good result, and the generation of Pd(0) from Pd(OAc)2 in the absence
of a base is necessary to increase the yield.
In tr od u ction
intramolecular nucleophilic attack of active methylene
to a π-allylpalladium complex, and he recently also
reported the synthesis of carbapenam derivatives using
metathesis reaction.6 We have investigated the possibility
of synthesizing a carbapenem skeleton using organo-
metallic reagents.7
Palladium-catalyzed C-N bond-forming reactions be-
tween aryl halides and amines have been extensively
investigated over the past few years by Buchwald,
Hartwig, and others (Scheme 1).8 This reaction has been
extended to intramolecular reactions of aryl halides and
amides, carbamates, and sulfonamides, and it has been
utilized in many areas of organic synthesis.9
Extensive and succesive works have been performed
for the development of carbapenem antibiotics having
chemical and biological properties for clinical use since
the discovery by Merck’s group of thienamycin, the first
naturally occurring carbapenem antibiotic and one that
has strong antibiotic activity.1 The development of a new
method for forming a carbapenam skeleton is very
important in establishing a method for efficient synthesis
of new types of carbapenem antibiotics.2 In general, for
the construction of a carbapenam skeleton, a five-
membered ring is formed from four-membered â-lactam.
However, it is not so easy to construct a carbapenam
skeleton because of its highly strained structure. Orga-
nometallic reagents have been extensively studied over
the past few decades by many organic chemists, and they
now play very important roles in synthetic organic
chemistry. There are several remarkable reports on the
construction of carbapenam skeletons with use of orga-
nometallic reagents.3 For example, as originally reported
by Merck’s group, intramolecular reaction of a rhodium-
carbene complex with the N-H bond of â-lactam is often
used for the synthesis of a wide range of carbapenem
derivatives.4 Trost reported the synthesis of carbapenam
derivatives using palladium-catalyzed cyclization.5 Genet
reported the synthesis of carbapenem derivatives by
Our plan for the construction of a carbapenem skeleton
involving the coupling of vinyl halide and amide in the
presence of a palladium catalyst is shown in Scheme 2,7c
although little is known about the reaction between vinyl
(6) (a) Roland, S.; Durand, J . O.; Savignac, M.; Geneˆt, J . P.
Tetrahedron Lett. 1995, 36, 3007. (b) Galland, J .-C.; Roland, S.;
Malpart, J .; Savignac, M.; Genet, J .-P. Eur. J . Org. Chem. 1999, 621.
(c) Duboc, R.; He´naut, C.; Savignac, M.; Genet, J .-P.; Bhatnagar, N.
Tetrahedron Lett. 2001, 42, 2461.
(7) (a) Mori, M.; Kozawa, Y.; Nishida, M.; Kanamaru, M.; Onozuka,
K.; Takimoto, M. Org. Lett. 2000, 2, 3245. (b) Kozawa, Y.; Mori, M.
Tetrahedron Lett. 2001, 42, 4869. (c) Preliminary report of this
article: Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43, 111.
(8) (a) Hartwig, J . F. Angew. Chem., Int. Ed. 1998, 37, 2046. (b)
Wolfe, J . P.; Wagaw, S.; Marcoux, J .-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805. (c) Ali, M. H.; Buchwald, S. L. J . Org. Chem. 2001,
66, 2560. (d) Stauffer, S. R.; Lee, S.; Stambuli, J . P.; Hauck, S. I.;
Hartwig, J . F. Org. Lett. 2000, 2, 1423. (e) Roy, A. H.; Hartwig, J . F.
J . Am. Chem. Soc. 2001, 123, 1232. (f) Nishiyama, M.; Yamamoto, T.;
Koie, Y. Tetrahedron Lett. 1998, 39, 617. (g) Yamamoto, T.; Nishiyama,
M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367. (h) Wolfe, J . P.;
Buchwald, S. L. J . Org. Chem. 1997, 62, 1264. (i) Huang, J .; Grasa,
G.; Nolan, S. P. Org. Lett. 1999, 1, 1307. (j) Wolfe, J . P.; Rennels, R.
A.; Buchwald, S. L. Tetrahedron 1996, 52, 7525. (k) Yang, B. H.;
Buchwald, S. L. Org. Lett. 1999, 1, 35. (l) Yin, J .; Buchwald, S. L. Org.
Lett. 2000, 2, 1101. (m) Shakespeare, W. C. Tetrahedron Lett. 1999,
40, 2035.
* Corresponding author.
(1) (a) Kahan, J . S.; Kahan, F. M.; Goegelman, R.; Currie, S. A.;
J ackson, M.; Stapley, E. O.; Miller, T. W.; Miller, A. K.; Hendlin, D.;
Mochales, S.; Hernandez, S.; Woodruff, H. B.; Birnbaum, J . J . Antibiot.
1979, 32, 1. (b) Albers-Scho¨nberg, G.; Arison, B. H.; Hensens, O. D.;
Hirshfield, J .; Hoogsteen, K.; Kaczka, E. A.; Rhodes, R. E.; Kahan, J .
S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.; Ruswinkle, L. J .; Morin,
R. B.; Christensen, B. G. J . Am. Chem. Soc. 1978, 100, 6491. (c)
Sunagawa, M.; Sasaki, A. Heterocycles 2001, 54, 497.
(2) Berks, A. H. Tetrahedron 1996, 52, 331.
(3) Barrett, A. G. M.; Sturgess, M. A. Tetrahedron 1988, 44, 5615.
(4) (a) Ratcliffe, R. W.; Salzmann, T. N.; Christensen, B. G.
Tetrahedron Lett. 1980, 21, 31. (b) Salzmann, T. N.; Ratcliffe, R. W.;
Christensen, B. G.; Bouffard, F. A. J . Am. Chem. Soc. 1980, 102, 6161.
(c) Williams, M. A.; Hsiao, C.-N.; Miller, M. J . J . Org. Chem. 1991, 56,
2688. (d) Kume, M.; Kubota, T.; Iso, Y. Tetrahedron Lett. 1995, 36,
8043.
(9) (a) Madar, D. J .; Kopecka, H.; Pireh, D.; Pease, J .; Pliushchev,
M.; Sciotti, R. J .; Wiedeman, P. E.; Djuric, S. W. Tetrahedron Lett.
2001, 42, 3681. (b) Cacchi, S.; Antonella Goggiamani, G. F.; Zappia,
G. Org. Lett. 2001, 3, 2539. (c) He, F.; Foxman, B. M.; Snider, B. B. J .
Am. Chem. Soc. 1998, 120, 6417. (d) Peat, A. J .; Buchwald, S. L. J .
Am. Chem. Soc. 1996, 118, 1028. (e) Wagaw, S.; Rennnels, R. A.;
Buchwald, S. L. J . Am. Chem. Soc. 1997, 119, 8451.
(5) Trost, B. M.; Chen, S.-F. J . Am. Chem. Soc. 1986, 108, 6053.
10.1021/jo020584i CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/15/2003
3064
J . Org. Chem. 2003, 68, 3064-3067