Journal of the American Chemical Society
Page 4 of 6
(13) For a review, see: Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Semipinacol
This work is supported by National Science Foundation of China
(Grand No. 21772004, 21632002, and 21871012. We thank Dr. Jie
Su and Mr. Yuan-He Li from Peking University for the X-ray
crystallographic detection and analysis. This paper is dedicated to
Professor Henry N. C. Wong on the occasion of his 70th birthday.
Rearrangement in Natural Product Synthesis. Chem. Rev. 2011, 111,
7523.
1
2
3
4
(14) For reviews, see: (a) Abe, I.; Rohmer, M.; Prestwich, G. D. Enzymatic
Cyclization of Squalene and Oxidosqualene to Sterols and Triterpenes.
Chem. Rev. 1993, 93, 2189. (b) Yoder, R. A.; Johnston, J. N. A Case
Study in Biomimetic Total Synthesis:ꢀ Polyolefin Carbocyclizations to
Terpenes and Steroids. Chem. Rev. 2005, 105, 4730.
5
REFERENCES
6
7
8
9
(15) For a review, see: Brunoldi, E.; Luparia, M.; Porta, A.; Zanoni, G.;
Vidari, G. Biomimetic Cyclizations of Functionalized Isoprenoid
Polyenes: A Cornucopia of Synthetic Opportunities. Curr. Org. Chem.
2006, 10, 2259.
(16) Corey, E. J.; Staas, D. D. Demonstration of a Common Concerted
Mechanistic Pathway for the Acid-Catalyzed Cyclization of 5,6-
Unsaturated Oxiranes in Chemical and Enzymatic Systems. J. Am.
Chem. Soc. 1998, 120, 3526.
(17) (a) Johnson, W. S.; Gravestock, M. B.; Parry, R. J.; Okorie, D. A.
Acetylenic Bond Participation in Biogenetic-Like Olefinic
Cyclizations. Wagner-Meerwein Rearrangement of a Linear to a Bent
Vinyl Cation. J. Am. Chem. Soc. 1972, 94, 8604. (b) Mellor, M.;
Santos, A.; Scovell, E. G.; Sutherland, J. K. Some Epoxy-Acetylene
Cyclisations. J. Chem. Soc., Chem. Comm. 1978, 528. (c) Marson, C.
M.; Khan, A.; McGregor, J.; Grinter, T. J. Construction of
Polyfunctionalized Seven-Membered Rings by the Cyclization of 2,3-
Epoxy Alcohols. Tetrahedron Lett. 1995, 36, 7145. (d) Fontaneda, R.;
Alonso, P.; Fañanás, F. J.; Rodríguez, F. Scalable Synthesis of the
(1) (a) Zhao, Q.-Q.; Song, Q.-Y.; Jiang, K.; Li, G.-D.; Wei, W.-J.; Li, Y.;
Gao, K. Spirochensilides A and B, Two New Rearranged Triterpenoids
from Abies chensiensis. Org. Lett. 2015, 17, 2760. (b) Hill, R. A.;
Sutherland, A. Hot off the Press. Nat. Prod. Rep. 2015, 32, 1165.
(2) For selective unique spiro[4.5]ring systems (BC ring), see: (a) Guo, J.;
He, H.-P.; Fang, X.; Di, Y.-T.; Li, S.-L.; Zhang, Z.; Leng, Y.; Hua, H.-
M.; Hao, X.-J. Kansuinone, a Novel Euphane-Type Triterpene from
Euphorbia kansui. Tetrahedron Lett. 2010, 51, 6286. (b) Handa, N.;
Yamada, T.; Tanaka, R. An Unusual Lanostane-Type Triterpenoid,
Spiroinonotsuoxodiol, and Other Triterpenoids from Inonotus
obliquus. Phytochemistry 2010, 71, 1774. (c) Wang, G.-W.; Lv, C.;
Fang, X.; Tian, X.-H.; Ye, J.; Li, H.-L.; Shan, L.; Shen, Y.-H.; Zhang,
W.-D. Eight Pairs of Epimeric Triterpenoids Involving a Characteristic
Spiro-E/F Ring from Abies faxoniana. J. Nat. Prod. 2015, 78, 50. (d)
Ferreira, R. J.; Kincses, A.; Gajdács, M.; Spengler, G.; dos Santos, D.
J. V. A.; Molnár, J.; Ferreira, M.-J. U. Terpenoids from Euphorbia
pedroi as Multidrug-Resistance Reversers. J. Nat. Prod. 2018, 81,
2032.
For selective unique spiroketals in triterpenoids (EF ring), see: (a)
Chen, G.-F.; Li, Z.-L.; Pan, D.-J.; Tang, C.-M.; He, X.; Xu, G.-Y.;
Chen, K.; Lee, K.-H. The Isolation and Structural Elucidation of Four
Novel Triterpene Lactones, Peudolarolides A, B, C, and D, from
Pseudolarix kaempferi. J. Nat. Prod. 1993, 56, 1114. (b) Umeyama,
A.; Ohta, C.; Shino, Y.; Okada, M.; Nakamura, Y.; Hamagaki, T.;
Imagawa, H.; Tanaka, M.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.;
Ōmura, S.; Hashimoto, T. Three Lanostane Triterpenoids with
Antitrypanosomal Activity from the Fruiting Body of Hexagonia
tenuis. Tetrahedron 2014, 70, 8312. (c) Tang, Y.; Zhao, Z.-Z.; Yao, J.-
N.; Feng, T.; Li, Z.-H.; Chen, H.-P.; Liu, J.-K. Irpeksins A–E, 1,10-
seco-Eburicane-Type Triterpenoids from the Medicinal Fungus Irpex
lacteus and Their Anti-NO Activity. J. Nat. Prod. 2018, 81, 2163.
(3) Zheng, W. J.; Fu, L. G. Flora of China; Wu, Z. Y., Ed.; Science Press:
Beijing, 1978, Vol. 7, p 68.
(4) For a review, see: Yang, X.-W.; Li, S.-M.; Shen, Y.-H.; Zhang, W.-D.
Phytochemical and Biological Studies of Abies Species. Chem.
Biodivers. 2008, 5, 56.
(5) Yamamoto, Y.; Gaynor, R. B. Therapeutic Potential of Inhibition of
the NF-κB Pathway in the Treatment of Inflammation and Cancer. J.
Clin. Invest. 2001, 107, 135.
(6) For a review, see: Long, R.; Huang, J.; Gong, J.; Yang, Z. Direct
Construction of Vicinal All-carbon Quaternary Stereocenters in
Natural Product Synthesis. Nat. Prod. Rep. 2015, 32, 1584.
(7) For a review, see: Perron, F.; Albizati, K. F. Chemistry of Spiroketals.
Chem. Rev. 1989, 89, 1617.
(8) For a review, see: Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of
Spirocyclic Scaffolds in Drug Discovery. Bioorg. Med. Chem. Lett.
2014, 24, 3673.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Amber Odorant 9-epi-Ambrox Through
a Biomimetic Cationic
Cyclization/Nucleophilic Bromination Reaction. Org. Lett. 2016, 18,
4626.
(18) Epoxide 2 can be obtained reliably in 97% ee on >20 g scales in five
steps by modified published methods (see SI for details): Corey, E. J.;
Noe, M. C.; Shieh, W.-C. A Short and Convergent Enantioselective
Synthesis of (3S)-2,3-Oxidosqualene. Tetrahedron Lett. 1993, 34,
5995.
(19) After we achieved the optimized reaction condition for synthesis of
compound 3 in 2016 (see SI for details), Rodríguez and coworkers
reported their results at 2018: Fontaneda, R.; Fañanás, F. J.; Rodríguez,
F. Construction of a Diverse Set of Terpenoid Decalin Subunits from a
Common Enantiomerically Pure Scaffold Obtained by a Biomimetic
Cationic Cyclization. Chem. Commun. 2018, 54, 11025.
(20) (a) Behenna, D. C.; Corey, E. J. Simple Enantioselective Approach to
Synthetic Limonoids. J. Am. Chem. Soc. 2008, 130, 6720. (b)
Bogenstätter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L.
Enantioselective Total Synthesis of the Kinesin Motor Protein Inhibitor
Adociasulfate 1. J. Am. Chem. Soc. 1999, 121, 12206. (c) Xu, S.; Gu,
J.; Li, H.; Ma, D.; Xie, X.; She, X. Enantioselective Total Synthesis of
(−)-Walsucochin B. Org. Lett. 2014, 16, 1996.
(21) (a) Kulcitki, V.; Ungur, N.; Gavagnin, M.; Carbone, M.; Cimino, G.
Synthesis and Absolute Stereochemistry of Marine Nor-Sesquiterpene
Austrodoric Acid. Tetrahedron: Asymmetry 2004, 15, 423. (b)
Kulcitki,V.; Ungur, N.; Gavagnin, M.; Carbone, M.; Cimino, G.
Further Synthetic Studies Towards the Austrodorane Skeleton:
Synthesis of Austrodoral. Eur. J. Org. Chem. 2005, 1816. (c) Alonso,
P.; Pardo, P.; Galván, A.; Fañanás, F. J.; Rodríguez, F. Synthesis of
Cyclic Alkenyl Triflates by a Cationic Cyclization Reaction and Its
Application in Biomimetic Polycyclizations and Synthesis of
Terpenes. Angew. Chem., Int. Ed. 2015, 54, 15506. (d) Fujiwara, N.;
Kinoshita, M.; Uchida, A.; Ono, M.; Kato, K.; Akita, H. Acid-
Promoted Rearrangement of Drimane Type Epoxy Compounds and
Their Application in Natural Product Synthesis. Chem. Pharm. Bull.
2012, 60, 562. (e) Sîrbu, T.; Girbu, V.; Harghel, P.; Rusu, V.; Ungur,
N.; Kulciţki, V. Selectivity Control in Terpene Rearrangements: A
Biomimetic Synthesis of the Halimanic Bicyclic Core. Synthesis 2019,
51, 1995.
(9) For the review of application of furan endoperoxides in syntheses of
G. Using Singlet Oxygen to Synthesize Polyoxygenated Natural
Products from Furans. Acc. Chem. Res. 2008, 41, 1001.
(10) For reviews, see: (a) Saito, S.; Yamamoto, H. Directed Aldol
Condensation. Chem. – Eur. J. 1999, 5, 1959. (b) Abiko, A. Boron-
Mediated Aldol Reaction of Carboxylic Esters. Acc. Chem. Res. 2004,
37, 387.
(11) (a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. Organocobalt
Complexes. Part II. Reaction of Acetylenehexacarbonyldicobalt
Complexes, (R1C2R2)Co2(CO)6, with Norbornene and Its Derivatives.
J. Chem. Soc., Perkin Trans, 1 1973, 977. (b) For a review, see: Blanco-
Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.; Pérez-
Castells, J. The Pauson–Khand Reaction, a Powerful Synthetic Tool
for the Synthesis of Complex Molecules. Chem. Soc. Rev. 2004, 33,
32.
(22) This chemistry has been explained by Felkin-Anh model and Burgi-
Dunitz angle, see SI for details.
(23) Baik, M.-H.; Mazumder, S.; Ricci, P.; Sawyer, J. R.; Song, Y.-G.;
Wang, H.; Evans, P. A. Computationally Designed and Experimentally
Confirmed Diastereoselective Rhodium-Catalyzed Pauson–Khand
Reaction at Room Temperature. J. Am. Chem. Soc. 2011, 133, 7621.
(24) (a) As far as our knowledge, this should be the first Rh-mediated
C(sp2)–Cl/C(sp3)–H coupling reaction. (b) Gatard, S.; Çelenligil-Çetin,
R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. Carbon–Halide Oxidative
Addition and Carbon–Carbon Reductive Elimination at a (PNP)Rh
Center. J. Am. Chem. Soc. 2006, 128, 2808. (c) Wang, X.; Lane, B. S.;
(12) You, L.; Liang, X. T.; Xu, L. M.; Wang, Y. F.; Zhang, J. J.; Su, Q.; Li,
Y. H.; Zhang, B.; Yang, S. L.; Chen, J. H.; Yang. Z. Asymmetric Total
Synthesis of Propindilactone G. J. Am. Chem. Soc. 2015, 137, 10120.
ACS Paragon Plus Environment