Journal of Chemical & Engineering Data
Article
(13) Zhao, D.; Fei, Z.; Scopelliti, R.; Dyson, P. J. Synthesis and
characterization of ionic liquids incorporating the nitrile functionality.
Inorg. Chem. 2004, 43 (6), 2197−2205.
(14) Lateef, H.; Grimes, S.; Kewcharoenwong, P.; Feinberg, B.
Separation and recovery of cellulose and lignin using ionic liquids: a
process for recovery from paper-based waste. J. Chem. Technol.
Biotechnol. 2009, 84 (12), 1818−1827.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(15) Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J.
Nitrile-Functionalized Pyridinium Ionic Liquids: Synthesis, Character-
ization, and Their Application in Carbon−Carbon Coupling
Reactions. J. Am. Chem. Soc. 2004, 126 (48), 15876−15882.
(16) Ullah, Z.; Bustam, M. A.; Man, Z.; Shah, S. N.; Khan, A. S.;
Muhammad, N. Synthesis, characterization and physicochemical
properties of dual-functional acidic ionic liquids. J. Mol. Liq. 2016,
223, 81−88.
(17) Ramli, N. A. S.; Amin, N. A. S. A new functionalized ionic liquid
for efficient glucose conversion to 5-hydroxymethyl furfural and
levulinic acid. J. Mol. Catal. A: Chem. 2015, 407, 113−121.
(18) Ziyada, A. K.; Bustam, M. A.; Murugesan, T.; Wilfred, C. D.
Effect of sulfonate-based anions on the physicochemical properties of
1-alkyl-3-propanenitrile imidazolium ionic liquids. New J. Chem. 2011,
35 (5), 1111−1116.
(19) Perdew, J. P. Density-functional approximation for the
correlation energy of the inhomogeneous electron gas. Phys. Rev. B:
Condens. Matter Mater. Phys. 1986, 33 (12), 8822.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Funding
The authors gratefully acknowledge the Ministry of Higher
Education (MOHE) for funding the research work under the
Fundamental Research Grant Scheme and the Centre of
Research in Ionic Liquids (CORIL), all of the research officers
and postgraduate students for helping in all aspects.
Notes
The authors declare no competing financial interest.
(20) Becke, A. D. Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys.
1988, 38 (6), 3098.
REFERENCES
■
(21) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary
basis sets for main row atoms and transition metals and their use to
approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97 (1−4),
119−124.
(1) Ullah, Z.; Bustam, M. A.; Man, Z.; Muhammad, N.; Khan, A. S.
Synthesis, characterization and the effect of temperature on different
physicochemical properties of protic ionic liquids. RSC Adv. 2015, 5
(87), 71449−71461.
(22) Schafer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted
̈
(2) Almeida, H. F.; Freire, M. G.; Fernandes, A. M.; Lopes-da-Silva, J.
A.; Morgado, P.; Shimizu, K.; Filipe, E. J.; Canongia Lopes, J. N.;
Santos, L. M.; Coutinho, J. A. Cation alkyl side chain length and
symmetry effects on the surface tension of ionic liquids. Langmuir
2014, 30 (22), 6408−6418.
Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J.
Chem. Phys. 1994, 100 (8), 5829−5835.
(23) Ahmed, K.; Auni, A.; Ara, G.; Rahman, M.; Mollah, M. Y. A.;
Susan, M. A. B. H. Solvatochromic And Fluorescence Spectroscopic
Studies On Polarity Of Ionic Liquid And Ionic Liquid-Based Binary
Systems. J. Bangladesh Chem. Soc. 2013, 25 (2), 146−158.
(3) Freire, M. G.; Teles, A. R. R.; Rocha, M. A.; Schroder, B.; Neves,
̈
C. M.; Carvalho, P. J.; Evtuguin, D. V.; Santos, L. M.; Coutinho, J. A.
Thermophysical characterization of ionic liquids able to dissolve
biomass. J. Chem. Eng. Data 2011, 56 (12), 4813−4822.
(4) Khan, Z. U. H.; Kong, D.; Chen, Y.; Muhammad, N.; Khan, A.
U.; Khan, F. U.; Tahir, K.; Ahmad, A.; Wang, L.; Wan, P. Ionic liquids
based fluorination of organic compounds using electrochemical
method. J. Ind. Eng. Chem. 2015, 31, 26−38.
(5) Muhammad, N.; Man, Z.; Mutalib, M.; Bustam, M. A.; Wilfred,
C. D.; Khan, A. S.; Ullah, Z.; Gonfa, G.; Nasrullah, A. Dissolution and
separation of wood biopolymers using ionic liquids. ChemBioEng Rev.
2015, 2 (4), 257−278.
(6) Ullah, Z.; Bustam, M. A.; Muhammad, N.; Man, Z.; Khan, A. S.
Synthesis and thermophysical properties of hydrogensulfate based
acidic ionic liquids. J. Solution Chem. 2015, 44 (3−4), 875−889.
(7) Oliveira, M. V.; Vidal, B. T.; Melo, C. M.; de Miranda, R. d. C.;
Soares, C. M.; Coutinho, J. A.; Ventura, S. P.; Mattedi, S.; Lima, A. S.
(Eco) toxicity and biodegradability of protic ionic liquids. Chemosphere
2016, 147, 460−466.
(8) Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties
and Applications. Chem. Rev. 2008, 108 (1), 206−237.
(9) Welton, T. Room-Temperature Ionic Liquids. Solvents for
Synthesis and Catalysis. Chem. Rev. 1999, 99 (8), 2071−2084.
(10) Meindersma, G. W.; De Haan, A. B. Cyano-containing ionic
liquids for the extraction of aromatic hydrocarbons from an aromatic/
aliphatic mixture. Sci. China: Chem. 2012, 55 (8), 1488−1499.
(11) MacFarlane, D. R.; Golding, J.; Forsyth, S.; Forsyth, M.;
Deacon, G. B. Low viscosity ionic liquids based on organic salts of the
dicyanamide anion. Chem. Commun. 2001, No. 16, 1430−1431.
(12) Gonfa, G.; Bustam, M. A.; Muhammad, N.; Khan, A. S.
Evaluation thermophysical properties of functionalized imidazolium
thiocyanate based ionic liquids. Ind. Eng. Chem. Res. 2015, 54, 12428.
(24) De Santis, S.; Masci, G.; Casciotta, F.; Caminiti, R.; Scarpellini,
E.; Campetella, M.; Gontrani, L. Cholinium-amino acid based ionic
liquids: a new method of synthesis and physico-chemical character-
ization. Phys. Chem. Chem. Phys. 2015, 17 (32), 20687−20698.
(25) Zhang, Q.; Li, Z.; Zhang, J.; Zhang, S.; Zhu, L.; Yang, J.; Zhang,
X.; Deng, Y. Physicochemical properties of nitrile-functionalized ionic
liquids. J. Phys. Chem. B 2007, 111 (11), 2864−2872.
(26) Tariq, M.; Forte, P. A. S.; Gomes, M. F. C.; Lopes, J. N. C.;
Rebelo, L. P. N. Densities and refractive indices of imidazolium- and
phosphonium-based ionic liquids: Effect of temperature, alkyl chain
length, and anion. J. Chem. Thermodyn. 2009, 41 (6), 790−798.
́
(27) Sanchez, L. G.; Espel, J. R.; Onink, F.; Meindersma, G. W.;
Haan, A. B. d. Density, viscosity, and surface tension of synthesis grade
imidazolium, pyridinium, and pyrrolidinium based room temperature
ionic liquids. J. Chem. Eng. Data 2009, 54 (10), 2803−2812.
(28) Ziyada, A. K.; Wilfred, C. D. Effect of temperature and anion on
densities, viscosities, and refractive indices of 1-octyl-3-propanenitrile
imidazolium-based ionic liquids. J. Chem. Eng. Data 2014, 59 (5),
1385−1390.
́
(29) Gardas, R. L.; Freire, M. G.; Carvalho, P. J.; Marrucho, I. M.;
Fonseca, I. M.; Ferreira, A. G.; Coutinho, J. A. High-pressure densities
and derived thermodynamic properties of imidazolium-based ionic
liquids. J. Chem. Eng. Data 2007, 52 (1), 80−88.
(30) Tariq, M.; Forte, P.; Gomes, M. C.; Lopes, J. C.; Rebelo, L.
Densities and refractive indices of imidazolium-and phosphonium-
based ionic liquids: Effect of temperature, alkyl chain length, and
anion. J. Chem. Thermodyn. 2009, 41 (6), 790−798.
(31) Singh, T.; Kumar, A. Temperature dependence of physical
properties of imidazolium based ionic liquids: Internal pressure and
molar refraction. J. Solution Chem. 2009, 38 (8), 1043−1053.
J
J. Chem. Eng. Data XXXX, XXX, XXX−XXX