10.1002/cmdc.201900302
ChemMedChem
COMMUNICATION
In summary, highly efficient PTA C-4 NPs based on aza-
BODIPY with D-A structure has been rationally developed via
perturbation theory. The systematic investigation of theoretical
calculation, fluorescence quantum yield, photothemal conversion
efficiency and singlet oxygen generation ability have confirmed
that the rational optimization of donor–acceptor structure, heavy
atom number and their functionalization position can effectively
decrease energy gap between the singlet and triplet states and
increase spin–orbit coupling constant, which contributes to the
enhanced intersystem crossing rate for singlet oxygen
generation and nonradiative transition for photothermal
conversion efficiency simultaneously. Noteworthily, water
Program for Support of Top-Notch Young Professionals,
Scientific and Technological Innovation Teams of Colleges and
Universities in Jiangsu Province (TJ215006).
Conflict of interest
The authors declare no conflict of interest.
Keywords: phototherapeutic agent • aza-BODIPY • heavy atom
effect • perturbation theory • multimode imaging
soluble
C-4
NPs
showed
concentration-dependent
References:
photoacoustic and fluorescent signal, high photothermal
conversion efficiency (η = 35.9%) and abundant singlet oxygen
generation ability. FI, PAI and PTI of C-4 NPs in vivo manifest
that C-4 NPs can efficiently accumulate in tumor parts via EPR
effects. The C-4 NPs show efficient therapeutic performance
without recurrence when utilized in vivo with mild condition,
demonstrating their efficient phototherapeutic performance. This
study will offer more interesting exploration on the
multifunctional nanotheranostic agents for potential clinical
applications.
[1]
[2]
[3]
[4]
C. A. Choi, J. E. Lee, Z. A. I. Mazrad, Y. K. Kim, I. In, J. H. Jeong, S. Y.
Park, ChemMedChem 2018, 13, 1459-1468.
W. Zhao, A. Li, A. Zhang, Y. Zheng, J. Liu, ChemMedChem 2018, 13,
2134-2149.
X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, Adv. Healthcare
Mater. 2018, 7, 1701394.
Y. Tian, R. Guo, Y. Wang, W. Yang, Adv. Healthcare Mater. 2016, 5,
3099.
[5] H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim,
Chem. Soc. Rev. 2018, 47, 2280-2297.
[6] M. Li, T. Xiong, J. Du, R. Tian, M. Xiao, L. Guo, S. Long, J. Fan, W. Sun,
K. Shao, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2019, 141,
2695-2702.
Experimental Section
[7] Y. Xu, M. Zhao, L. Zou, L. Wu, M. Xie, T. Yang, S. Liu, Wei Huang, Q.
Zhao, ACS Appl. Mater. Interfaces 2018, 10, 44324-44335.
[8] S. Yeganeh, M. R. Wasielewski, M. A. Ratner, J. Am. Chem. Soc. 2009,
131, 2268-2273.
Synthesis of C-4: C-3 (92 mg, 0.1 mmol) and N-bromosuccinimide (NBS)
(100 mg, 0.3 mmol) were dissolved in dry CH2Cl2 (10 mL). Then they
reacted for 5 h. The final blue solid C-4 (103 mg, Yield: 95 %) was
obtained by recrystallization. 1H NMR (400 MHz, CDCl3) δ(ppm): 7.91 (d,
J = 4.4 Hz, 2H), 7.80 (d, J = 8.8 Hz, 4H), 7.21 (d, J = 4.4 Hz, 2H), 6.95 (d,
J = 8.8 Hz, 4H), 4.02 (t, J = 6.8 Hz, 4H), 1.86-1.79 (m, 4H), 1.52 – 1.45
(m, 4H), 1.38 – 1.29 (m, 16H), 0.92-0.88 (m, 6H). 13C NMR (100 MHz,
CDCl3) δ(ppm): 160.64, 148.03, 144.68, 142.52, 135.53, 132.51, 131.87,
131.10, 122.87, 121.21, 114.13, 108.82, 68.20, 31.90, 30.15, 29.56,
29.26, 26.09, 22.69, 14.13. 19F NMR (376.5 MHz, CDCl3) δ(ppm): -
132.06 (q, 2F). MALDI-TOF-MS m/z: 1080.97.
[9] S. Xu, Y. Yuan, X. Cai, C. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang, B.
Liu, Chem. Sci. 2015, 6, 5824-5830.
[10] J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323-5351.
[11] Y. Ge, D. F. O’Shea, Chem. Soc. Rev. 2016, 45, 3846-3864.
[12] H. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 2014, 43, 4778-
4823.
[13] Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang, X.
Dong, J. Mater. Chem. B 2017, 5, 1566-1573.
Animals Model and Tumor Assay: All Hela tumor bearing nude mice
were obtained from Nanjing Mergene Life Science Co., Ltd. and used
following to the guideline of the Laboratory Animal Center of Nanjing
Mergene Life Science Co., Ltd. When the tumor volume of Hela tumor
bearing nude mice was about 100 - 200 mm3, the Hela tumor-bearing
mice were randomly divided into five groups. They were treated with I) C-
4 NPs (200 μL, 150 μM) + laser irradiation (730 nm, 0.4 W cm-2, 5 min), II)
C-4 NPs + VC (25.0 μmol kg-1) + laser irradiation, III) PBS + laser
irradiation, IV) C-4 NPs only, V) PBS only, respectively. After the mice
[14] Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang, X.
Dong, ACS Nano 2017, 11, 1054-1063.
[15] J. Tian, J. Zhou, Z. Shen, L. Ding, J. Yu, H. Ju, Chem. Sci. 2015, 6,
5969-5977.
[16] M. Zhao, Y. Xu, M. Xie, L. Zou, Z. Wang, S. Liu, Q. Zhao, Adv.
Healthcare Mater. 2018, 7, 1800606.
[17] A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M. Gallagher, D. F.
O'Shea, J. Am. Chem. Soc. 2004, 126, 10619-10631.
[18]
J. Qi, Y. Fang, R. T. K. Kwok, X. Zhang, X. Hu, J. W. Y. Lam, D. Ding,
were intravenously injected with C-4 NPs for
6 h, the VC was
B. Tang, ACS Nano 2017, 11, 7177-7188.
intratumorly injected into the tumor. 0.5 h later, mice were irradiated. The
size of tumor and the body weight of Hela tumor bearing nude mice were
recorded every two days for 20 days. At day 20, the major organs and
tumors were acquired for hematoxylin-eosin staining.
[19] K. M. Farrell, M. M. Brister, M. Pittelkow, T. I. Sølling, C. E. Crespo-
Hernández, J. Am. Chem. Soc. 2018, 140, 11214-11218.
[20] B. Kilic, Nisa Yesilgul, V. Polat, Z. Gercek, E. U. Akkaya, Tetrahedron
Lett. 2016, 57, 1317-1320.
The detailed synthetic route of the all compounds and experimental
conditions can be acquired in the Supporting Information.
[21] R. P. Sabatini, T. M. McCormick, T. Lazarides, K. C. W, R. Eisenberg,
D. W. McCamant, J. Phys. Chem. Lett. 2011, 2, 223-227.
[22] S. Duman, Y. Cakmak, S. Kolemen, E. U. Akkaya, Y. Dede, J. Org.
Chem. 2012, 77, 4516-4527.
[23] Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z.
Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Angew.
Chem. Int. Ed. 2011, 50, 11937-11941.
Acknowledgements
The authors acknowledge financial support from the National
Funds for Distinguished Young Scientists (61825503), the
National Program for Support of Top-Notch Young Professionals,
the Priority Academic Program Development of Jiangsu Higher
Education Institutions (YX03001), National Natural Science
Foundation of China (51473078 and 21671108), National
[24] Y. Cakmak, T. Nalbantoglu, T. Durgut, E. U. Akkay, Tetrahedron Lett.
2014, 55, 538-540.
[25] W. Hu, H. Ma, B. Hou, H. Zhao, Y. Ji, R. Jiang, X. Hu, X. Lu, L. Zhang,
Y. Tang, Q. Fan, W. Huang, ACS Appl. Mater. Interfaces 2016, 8,
12039-12047.
[26] Y. Dai, C. Xu, X. Sun, X. Chen, Chem. Soc. Rev. 2017, 46, 3830-3852.
5
This article is protected by copyright. All rights reserved.