6266 Macromolecules, Vol. 43, No. 15, 2010
Communication
These parameters are known to be very important for
reliable applications.30
In summary, it could be demonstrated that a mono-
mer consisting of six fused rings can still form a soluble
polymer when copolymerized with alkylated dithiophenes.
The strong interchain aggregation leads to highly ordered
bulk material with low π-π distance, showing the effec-
tivity of introducing monomers of this size. In a field-effect
transistor, good device characteristics, i.e., low contact
resistance and low hysteresis, have been measured. The
field-effect mobility does not yet reach values needed for
applications but is likely to be achieved after more process-
ing optimizations. The present results strongly support the
potential of conjugated polymers containing large fused
π-systems.
Figure 2. (a) Two-dimensional wide-angle X-ray diffraction pattern of
an extruded fiber of PTTH. (b) Cartoon suggesting the packing of the
polymer. The polymer structures are obtained by an MMFF optimiza-
tion and fit to the X-ray diffraction data.
Supporting Information Available: Experimental details.
This material is available free of charge via the Internet at
References and Notes
(1) Klauk, H. Organic Electronics: Materials, Manufacturing and
Applications: An Industrial Perspective, 1st ed.; Wiley-VCH:
Weinheim, 2006.
€
(2) Woll, C. Physical and Chemical Aspects of Organic Electronics:
From Fundamentals to Functioning Devices: Structural and Electro-
nic Properties of OFETs, 1st ed.; Wiley-VCH: Weinheim, 2009.
(3) Sirringhaus, H.; Ando, M. MRS Bull. 2008, 33 (7), 676–682.
(4) Braga, D.; Horowitz, G. Adv. Mater. 2009, 21 (14-15), 1473–1486.
(5) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47 (3), 452–483.
(6) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew.
Chem., Int. Ed. 2008, 47 (22), 4070–4098.
(7) Takimiya, K.; Kunugi, Y.; Otsubo, T. Chem. Lett. 2007, 36 (5),
578–583.
(8) Ong, B. S.; Wu, Y. L.; Li, Y. N.; Liu, P.; Pan, H. L. Chem.;Eur. J.
2008, 14 (16), 4766–4778.
(9) de Boer, B.; Facchetti, A. Polym. Rev. 2008, 48 (3), 423–431.
(10) Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.;
Frechet, J. M. J.; Toney, M. F. Macromolecules 2005, 38 (8),
3312–3319.
(11) Kim, D. H.; Park, Y. D.; Jang, Y. S.; Yang, H. C.; Kim, Y. H.; Han,
J. I.; Moon, D. G.; Park, S. J.; Chang, T. Y.; Chang, C. W.; Joo,
M. K.; Ryu, C. Y.; Cho, K. W. Adv. Funct. Mater. 2005, 15 (1),
77–82.
(12) Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.;
Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. Adv. Funct.
Mater. 2004, 14 (8), 757–764.
(13) Abdou, M. S. A.; Orfino, F. P.; Son, Y.; Holdcroft, S. J. Am. Chem.
Soc. 1997, 119 (19), 4518–4524.
(14) Pan, H. L.; Li, Y. N.; Wu, Y. L.; Liu, P.; Ong, B. S.; Zhu, S. P.; Xu,
G. J. Am. Chem. Soc. 2007, 129 (14), 4112–4113.
(15) Rieger, R.; Beckmann, D.; Pisula, W.; Steffen, W.; Kastler, M.;
Figure 3. Transistor characteristics of PTTH on a hexamethyldisila-
zane (HMDS)-treated silicon waver with top-contact gold electrodes:
(a) transfer curve; (b) output curves.
€
Mullen, K. Adv. Mater. 2010, 22 (2), 83–86.
(16) Li, J.; Qin, F.; Li, C. M.; Bao, Q.; Chan-Park, M. B.; Zhang, W.;
Qin, J.; Ong, B. S. Chem. Mater. 2008, 20 (6), 2057.
(17) Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.;
Smilgies, D. M.; He, M. Q.; Gasper, S.; Zhang, F.; Sorensen, M.
J. Am. Chem. Soc. 2008, 130 (40), 13202–13203.
Gold electrodes were evaporated on top. The measured
curves can be seen in Figure 3. The average field-effect
mobility extracted from the saturation regime was deter-
mined to be (1.3 ( 0.2) Â 10-3 cm2/(V s) with an on-off ratio
of 3.8 Â 103. This value does not reach a level required for
applications, i.e., 0.1 cm2/(V s), but with more processing
optimizations such as using a top-gate transistor setup, this
value may be accessible. It is well-known for P3HT that
under standard testing conditions values exceeding 10-2
cm2/(V s) are rarely measured, but under optimum condi-
tions, much higher values can be reached.28,29 The transistor
curves of Figure 3 demonstrate the high potential of the
present material as the device shows very little hysteresis and
no bias stress effects under the applied extreme conditions,
i.e., the high potentials, as well as good reproducibility.
(18) Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.;
€
Baumgarten, M.; Pisula, W.; Mullen, K. Adv. Mater. 2008, 21,
213–216.
(19) Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.;
Kuwabara, H.; Yui, T. J. Am. Chem. Soc. 2007, 129 (51),
15732–15733.
(20) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald,
I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang,
W. M.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney,
M. F. Nature Mater. 2006, 5 (4), 328–333.
(21) Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.;
Frechet, J. M. J. Adv. Mater. 2003, 15 (18), 1519–1522.
(22) Kline, R. J.; McGehee, M. D. Polym. Rev. 2006, 46 (1), 27–45.
(23) Leclerc, M.; Frechette, M.; Bergeron, J. Y.; Ranger, M.; Levesque,
I.; Faid, K. Macromol. Chem. Phys. 1996, 197 (7), 2077–2087.