10.1002/ejic.201700454
European Journal of Inorganic Chemistry
FULL PAPER
Experimental Section
Keywords: iron • spin crossover • spin state • catalysis •
Mössbauer spectroscopy
Synthesis. [Fe(NH2trz)3]Br2 (1a). NH2trz (250 mg, 2.98 mmol) in water (1
mL) and FeBr2 (210 mg, 0.97 mmol)) in water (1 mL) were mixed under
[1]
[2]
M. Swart, M. Costas, Eds. , Spin States in Biochemistry and Inorganic
Chemistry, John Wiley & Sons, Ltd, Oxford, UK, 2015.
R. H. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239–
2314.
stirring. The precipitate was formed within
1 h and separated by
centrifugation (13000 rpm, 4 min), washed with water and dried in air. Yield
is 344 mg (74 %). Anal. Calcd for C6H12N12Br2Fe: C, 15.40; N, 35.92; H,
2.59. Found: C, 15.75; N, 36.12; H, 2.31.[Fe(NH2trz)3]Br2 (1b). The sample
was obtained as described for 1a, by replacing water with ethanol in all
steps. Yield is 382 mg (82 %). Anal. Calcd for C6H12N12Br2Fe: C, 15.40; N,
35.92; H, 2.59. Found: C, 15.51; N, 35.96; H, 2.48.
[3]
[4]
T. Risse, D. Hollmann, A. Brückner, in Catalysis 2015, 27, 1–32.
T. Yang, M. G. Quesne, H. M. Neu, F. G. Cantú Reinhard, D. P. Goldberg,
S. P. de Visser, J. Am. Chem. Soc. 2016, 10.1021/jacs.6b05027.
M. Higuchi, Y. Hitomi, H. Minami, T. Tanaka, T. Funabiki, Inorg. Chem.
2005, 44, 8810–8821.
[5]
[Fe(NH2trz)3](ClO4)2 (2). The sample was prepared as 1a starting from
NH2trz (250 mg, 2.98 mmol) and Fe(ClO4)2·6H2O (360 mg, 0.99 mmol).
Yield is 330 mg (65 %). Elemental analysis was not performed for safety
reasons.
[6]
[7]
G. Xue, R. De Hont, E. Münck, L. Que, Nat. Chem. 2010, 2, 400–405.
L. E. N. Allan, M. P. Shaver, A. J. P. White, V. C. Gibson, Inorg. Chem.
2007, 46, 8963–70.
[8]
[9]
M. P. Shaver, L. E. N. Allan, H. S. Rzepa, V. C. Gibson, Angew. Chemie
Int. Ed. 2006, 45, 1241–1244.
J. S. Valentine, Bioinorg. Chem. 1994, 313–523.
Catalysis. Catalytic measurements were performed in 3.5 mL quartz
cuvettes with 1 cm optical pathway. The temperature in the cuvette holder
was controlled with a Haake C50P thermostat. The concentration of the
product was monitored by measuring the absorption of quinone with a UV-
Vis Carry spectrometer at 390 ± 2.5 nm with a 5 sec interval.
[10] V. Krewald, M. Retegan, F. Neese, W. Lubitz, D. A. Pantazis, N. Cox,
Inorg. Chem. 2016, 55, 488–501.
[11] F. P. Guengerich, A. W. Munro, J. Biol. Chem. 2013, 288, 17065–17073.
[12] M. T. Green, J. Am. Chem. Soc. 2006, 128, 1902–1906.
[13] M. E. Ali, B. Sanyal, P. M. Oppeneer, J. Phys. Chem. B 2012, 116, 5849–
5859.
A catalyst (3 mg) was added to the TCC (0.23 mg) in toluene (2.9 mL). The
cuvette was thermalized for 4 min prior to each measurement. CPBA in
toluene (0.1 mL, 0.13 mol L-1) was added after and a UV-Vis monitoring
started directly. No stirring during the reaction was applied.
[14] A. Ghosh, D. Mitchell, A. Chanda, A. D. Ryabov, D. L. Popescu, E. C.
Upham, G. J. Collins, T. J. Collins, V. Pennsyl, J. Am. Chem. Soc. 2008,
130, 15116–15126.
[15] S. Brooker, Chem. Soc. Rev. 2015, 44, 2880–2892.
[16] M. A. Halcrow, Spin-Crossover Materials, John Wiley & Sons Ltd, Oxford,
UK, 2013.
Oxidized samples. To produce 1a-ox and 2-ox, a Fe(II) complex (0.1
mmol) was mixed with 3-chloroperoxobenzoic acid in toluene (3 ml, 0.13
mol L-1) and allowed to stay for 5 min at 20 °C. To produce 1a-ox-red and
2-ox-red, oxidized samples (0.1 mmol) were treated with TCC solution (3
ml, 0.3 mol L-1) and allowed to stay for 5 min at 20 °C. The powders were
separated from solutions by centrifugation (13000 rpm, 1 min), washed
with toluene and dried in air.
[17] P. Gütlich, Eur. J. Inorg. Chem. 2013, 2013, 581–591.
18]
P. Gütlich, H. A. Goodwin, in Top. Curr. Chem., Springer, 2004.
[19] J. Dugay, M. Giménez-Marqués, T. Kozlova, H. W. Zandbergen, E.
Coronado, H. S. J. van der Zant, Adv. Mater. 2015, 27, 1288–1293.
[20] A. Rotaru, J. Dugay, R. P. Tan, I. A. Guralskiy, L. Salmon, P. Demont, J.
Carrey, G. Molnár, M. Respaud, A. Bousseksou, Adv. Mater. 2013, 25,
1745–1749.
Magnetic susceptibility measurements. Temperature-dependent
magnetic susceptibility measurements were carried out with a Quantum-
Design MPMS-XL-5 SQUID magnetometer with a heating and cooling rate
of 1 K min−1, and a magnetic field of 0.5 T. A powder sample mixed with
liquid toluene was sealed using a hydrogen torch in a glass capillary (~ 4.5
mm long, inner diameter is 1.0 mm, outer diameter is 1.4 mm). Capillary
was fixed between two gelatin capsules. Molar magnetization was not
calculated because of the considerable diamagnetic impact of toluene and
of the capillary, which could not be accurately subtracted.
[21] H. J. Shepherd, I. A. Gural’skiy, C. M. Quintero, S. Tricard, L. Salmon, G.
Molnár, A. Bousseksou, Nat. Commun. 2013, 4, 2607.
[22] I. A. Gural’skiy, C. M. Quintero, J. S. Costa, P. Demont, G. Molnár, L.
Salmon, H. J. Shepherd, A. Bousseksou, J. Mater. Chem. C 2014, 2,
2949–2955.
[23] O. Kahn, J. Kröber, C. Jay, Adv. Mater. 1992, 4, 718–728.
[24] L. Salmon, G. Molnar, D. Zitouni, C. Quintero, C. Bergaud, J.-C. Micheau,
A. Bousseksou, J. Mater. Chem. 2010, 20, 5499–5503.
[25] I. A. Gural’skiy, C. M. Quintero, K. Abdul-Kader, M. Lopes, C. Bartual-
Murgui, L. Salmon, P. Zhao, G. Molnar, D. Astruc, A. Bousseksou, J.
Nanophotonics 2012, 6, 63513–63517.
Mössbauer spectroscopy. 57Fe-Mössbauer spectra were recorded in
transmission geometry with a 57Co source in a rhodium matrix using a
conventional constant-acceleration Mössbauer spectrometer. Isomer
shifts are given with respect to an α-Fe foil at ambient temperature. Fits of
the experimental Mössbauer data were performed using the Recoil
software (Lagarec and Rancourt, Ottawa University).
[26] J. A. Real, A. B. Gaspar, M. C. Muñoz, Dalt. Trans. 2005, 2062.
[27] B. Chance, Science 1968, 159, 654–658.
[28] T. Kawakami, Y. Tsujimoto, H. Kageyama, X.-Q. Chen, C. L. Fu, C.
Tassel, A. Kitada, S. Suto, K. Hirama, Y. Sekiya, Y. Makino, T. Okada,
T. Yagi, N. Hayashi, K. Yoshimura, S. Nasu, R. Podloucky, M. Takano,
Nat. Chem. 2009, 1, 371–376.
[29] L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva, S.V.
Larionov, Koord. Khim. 1990, 16, 654–661.
Acknowledgements
[30] O. Fouché, J. Degert, G. Jonusauskas, N. Daro, J.-F. Létard and E.
Freysz, Phys. Chem. Chem. Phys. 2010, 12, 3044–3052.
[31] L. G. Lavrenova, O. G. Shakirova, Eur. J. Inorg. Chem. 2013, 2013, 670–
682.
This work was financed by H2020-MSCA-IF-2014 grant 659614.
We acknowledge useful commentaries from Prof. I.O. Fritsky,
spectroscopic measurements from D. Spetter and graphical
contribution from O.I. Kucheriv. We also acknowledge very useful
comments from the anonymous reviewer on the mechanism of
the studied reaction.
[32] O. Roubeau, Chem. Eur. J. 2012, 18, 15230–15244.
[33] P. Gütlich, Y. Garcia, in Mössbauer Spectrosc. (Eds.: Y. Yoshida, G.
Langouche), Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp.
23–89.
[34] F.Neese, Inorg. Chim. Acta 2002, 337, 181–192.
[35] I. A. Gural’skiy, O. I. Kucheriv, S. I. Shylin, V. Ksenofontov, R. A. Polunin,
I. O. Fritsky, Chem. Eur. J. 2015, 21, 18076–18079.
This article is protected by copyright. All rights reserved.