The Journal of Organic Chemistry
Page 10 of 11
1
2
3
4
5
6
7
8
9
vinylhelicenes: chiroptical properties and redox switching. Chem. Eur. J.
ACKNOWLEDGMENTS
2015, 21, 17100-17115; c) Shen, C.; Loas, G.; Srebro-Hooper, M.;
Vanthuyne, N.; Toupet, L.; Cador, O.; Paul, F.; López Navarrete, J. T.;
Ramírez, F. J.; Nieto-Ortega, B.; Casado, J.; Autschbach, J.; Vallet, M.;
Crassous, J. Iron-alkynyl-helicenes: redox-triggered chiroptical tuning in the
vibrational and telecommunication domain. Angew. Chem. Int. Ed. 2016, 55,
8062-8066; d) Saleh, N.; Vanthuyne, N.; Bonvoisin, J.; Autschbach, J.;
Srebro-Hooper, M.; Crassous, J. Redox-triggered chiroptical switching
We acknowledge the Ministère de l’Education Nationale,
de la Recherche et de la Technologie, the Centre National de
la Recherche Scientifique (CNRS), the CNRS (Chirafun
network), and the ANR (12-BS07-0004-METALHEL-01),
for financial support. H. I. thanks the Région Bretagne for
financial support. K. D. thanks The University of Gabès, the
University of Rennes 1 and Campus France for financial
support. M.S.-H. acknowledges the young researchers’ T-
subsidy from the Ministry of Science and Higher Education
in Poland.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
activity of ruthenium(III)-bis-(-diketonato) complexes bearing
a
bipyridine-helicene ligand. Chirality 2018, 30, 592-601; e) Shen, C.; Srebro-
Hooper, M.; Weymuth, T.; Krausbeck, F.; López Navarrete, J. T.; Ramírez,
F. J.; Nieto-Ortega, B.; Casado, J.; Reiher, M.; Autschbach, J.; Crassous, J.
Redox-active Chiroptical Switching in Mono- and Bis-Iron-Ethynyl-
Carbo[6]Helicenes Studied by Electronic and Vibrational Circular
Dichroism and Resonance Raman Optical Activity. Chem. Eur. J. 2018, 24,
15067-15079; f) Shen, C.; He, X.; Toupet, L.; Norel, L.; Rigaut, S.;
Crassous, J. Dual redox and optical control of chiroptical activity in
photochromic dithienylethenes decorated with hexahelicene and bis-ethynyl-
ruthenium units. Organometallics 2018, 37, 697-705; g) Anger, E.; Srebro,
M.; Vanthuyne, N.; Roussel, C.; Toupet, L.; Autschbach, J.; Réau, R.;
Crassous, J. Helicene-grafted vinyl- and carbene-osmium complexes: an
example of acid-base chiroptical switching. Chem. Comm. 2014, 50, 2854-
2856; h) Saleh, N.; Moore, II, B.; Srebro, M.; Vanthuyne, N.; Toupet, L.;
Williams, J. A. G.; Roussel, C.; Deol, K. K.; Muller, G.; Autschbach, J.;
Crassous, J. Acid-base triggered switching of circularly polarized
luminescence and electronic circular dichroism in organic and
organometallic helicenes. Chem. Eur. J. 2015, 21, 1673-1681.
REFERENCES
(1) a) Amabilino, D. B. Chiral nanoscale systems: preparation, structure,
properties and function. Chem. Soc. Rev. 2009, 38, 669-670; b) Amabilino,
D. B. Chirality at the Nanoscale. Nanoparticles, Surfaces, Materials and
more, Wiley-VCH: 2009.
(2) a) Feringa, B. L. The Art of Building Small:ꢀ From Molecular Switches
to Molecular Motors. J. Org. Chem. 2007, 72, 6635-6652; b) Canary, J. W.
Redox-triggered chiroptical molecular switches. Chem. Soc. Rev. 2009, 38,
747-756; c) Browne, W. R.; Feringa, B. L. Molecular Switches, Wiley-
VCH, Weinheim, 2011, chapter 5, pp 121-180.
(3) Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines.
Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim,
2008.
(4) a) You, L.; Zha, D.; Anslyn, E. V. Recent Advances in Supramolecular
Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840-
7892; b) Canary, J. W.; Mortezaei, S.; Liang, J. Transition metal-based
chiroptical switches for nanoscale electronics and sensors. Coord. Chem.
Rev. 2010, 254, 2249-2266.
(5) a) Zhao, D.; Neubauer, T. M.; Feringa, B. L. Dynamic control of
chirality in phosphine ligands for enantioselective catalysis. Nature Comm.
2015, 6, 6652; see also reviews: b) Vlatkovic, M.; Collins, B. S. L.; Feringa,
B. L. Dynamic Responsive Systems for Catalytic Function. Chem. Eur. J.
2016, 22, 17080-17111; c) Dai, Z.; Lee, J.; Zhang, W. Chiroptical switches:
Applications in sensing and catalysis. Molecules 2012, 17, 1247-1277.
(6) a) Chen, C.-F.; Shen, Y. Helicene Chemistry - From Synthesis to
Applications, Springer, 2017; b) Rajca, A. Miyasaka, M. In Functional
Organic Materials, Wiley-VCH, 2007, pp 547-581; c) Shen, Y.; Chen, C.-F.
Helicenes: Synthesis and Applications. Chem. Rev. 2011, 112, 1463-1535;
d) Gingras, M. One hundred years of helicene chemistry. Part 3: applications
and properties of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051-1095; e)
(11) Isla, H.; Srebro-Hooper, M.; Jean, M.; Vanthuyne, N.; Roisnel, T.;
Lunkley, J. L.; Muller, G.; Williams, J. A. G.; Autschbach, J.; Crassous, J.
Conformational changes and chiroptical switching of enantiopure bis-
helicenic terpyridine upon Zn2+ binding. Chem. Comm. 2016, 52, 5932-
5935.
(12) Sato, K.; Harai. S. In Cyclophane chemistry fot the 21st century, H.
Takamura (Ed.), Gayathri, A. 2002, pp 173-198; b) Dumitrascu, F.;
Dumitrescu, D. G.; Aron, I. Azahelicenes and other similar tri and
tetracyclic helical molecules. Arkivoc 2010, 1, 1-10.
(13) Kaes, C.; Katz, A.; Hosseini, M. W. Bipyridine:ꢀ The Most Widely
Used Ligand. A Review of Molecules Comprising at Least Two 2,2‘-
Bipyridine Units. Chem. Rev. 2000, 100, 3553-3590.
(14) a) Fox, J. M.; Katz, T. J. Conversion of a [6]Helicene into an
[8]Helicene and a Helical 1,10-Phenanthroline Ligand. J. Org. Chem. 1999,
64, 302-305; b) Deshayes, K.; Broene, R. D.; Chao, I.; Knobler, C. B.;
Diederich, F. Synthesis of the helicopodands: novel shapes for chiral clefts.
J. Org. Chem. 1991, 56, 6787-6795; c) Takenaka, N.; Sarangthem, R. S.;
Captain, B. Helical Chiral Pyridine N‐Oxides:
A New Family of
Asymmetric Catalysts. Angew. Chem. Int. Ed. 2008, 47, 9708-9710; d)
Chen, J.; Captain, B.; Takenaka, N. Helical Chiral 2,2′-Bipyridine N-
Monoxides as Catalysts in the Enantioselective Propargylation of
Aldehydes with Allenyltrichlorosilane. Org. Lett. 2011, 13, 1654-1657; e)
Saleh, N.; Srebro, M.; Reynaldo, T.; Vanthuyne, N.; Toupet, L.; Chang, V.
Y.; Muller, G.; Williams, J. A. G.; Roussel, C.; Autschbach, J.; Crassous, J.
Enantio-enriched CPL-active helicene-bipyridine-rhenium complexes.
Chem. Comm. 2015, 51, 3754-3757; f) Klívar, J.; Šámal, M.; Jančařík, A.;
Vacek, J.; Bednárová, L.; Buděšínský, M.; Fiedler, P.; Starý, I.; Stará, I. G.
Asymmetric Synthesis of Diastereo- and Enantiopure Bioxahelicene 2,2′-
Bipyridines, Eur. J. Org. Chem. 2018, 2018, 5164-5178.
(15) Negishi, E. Magical Power of Transition Metals: Past, Present, and
Future (Nobel Lecture). Angew. Chem. Int. Ed. 2011, 50, 6738-6764.
(16) Lightner, D. A.; Hefelfinger, D. T.; Powers, T. W.; Frank, G. W.;
Trueblood, K. N. Hexahelicene. Absolute configuration. J. Am. Chem. Soc.
1972, 94, 3492-3497.
(17) (P*,P*)-1 means the racemic mixture of (P,P)- and (M,M)-1.
(18) Solovyov, K. N.; Borisevich, E. A. Intramolecular heavy-atom effect in
the photophysics of organic molecules. Phys.-Usp., 2005, 48, 231-253.
(19) a) Autschbach, J. Computing chiroptical properties with first-principles
theoretical methods: background and illustrative examples. Chirality 2009,
21, E116-E152; b) Srebro-Hooper, M.; Autschbach, J. Calculating Natural
Optical Activity of Molecules from First Principles. Annu. Rev. Phys. Chem.
2017, 68, 399-420.
(20) a) Rebek, Jr., J.; Trend, J. E.; Wattley, R. V.; Chakravorti, S. Allosteric
effects in organic chemistry. Site-specific binding. J. Am. Chem. Soc. 1979,
101, 4333-4337; b) Rebek, Jr., J.; Wattley, R. V. Allosteric effects. Remote
control of ion transport selectivity. J. Am. Chem. Soc. 1980, 102, 4853-4854;
c) Rebek, Jr., J.; Costello, T.; Marshall, L.; Wattley, R.; Gadwood, R. C.;
Onant, K. Allosteric effects in organic chemistry: binding cooperativity in a
model for subunit interactions. J. Am. Chem. Soc. 1985, 107, 7481-7487.
(21) a) Bell, T. W.; Jousselin, H. Self-Assembly of a Double-Helical
Complex of Sodium, Nature 1994, 367, 441-444; b) Haberhauer, G. Control
of Planar Chirality: The Construction of a Copper‐Ion‐Controlled Chiral
Molecular Hinge. Angew. Chem. Int. Ed. 2008, 47, 3635-3638; c) Ernst, S.;
Saleh, N.;
Shen, C.; Crassous, J. Helicene-based transition metal
complexes: synthesis, properties and applications. Chem. Sci. 2014, 5, 3680-
3694; f) Isla, H.; Crassous, J. Helicene-based chiroptical switches. C. R.
Chimie 2016, 19, 39-49.
(7) Berova, N.; Polavarapu, P. L.; Nakanishi, K.; Woody R. W. (Eds.),
Comprehensive Chiroptical Spectroscopy, John Wiley & Sons, 2012, vol.
1&2.
(8) a) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives.
VCH: Weinheim, 1995; b) Sauvage, J.-P. Perspectives in Supramolecular
Chemistry: Transition Metals in Supramolecular Chemistry, John Wiley &
Sons, 1999; c) Elschenbroich, C. Organometallics. Wiley-VCH: Weinheim,
2006.
(9) a) Brunner, H. Optically Active Organometallic Compounds of
Transition Elements with Chiral Metal Atoms. Angew. Chem. Int. Ed. 1999,
38, 1194-1208; b) Knof, U.; von Zelewsky, A. Predetermined Chirality at
Metal Centers. Angew. Chem. Int. Ed. 1999, 38, 302-322; c) Amouri, H.;
Gruselle, M. Chirality in Transition Metal Chemistry: Molecules,
Supramolecular Assemblies and Materials. Wiley: Chichester, 2007; d)
Crassous, J. Chiral transfer in coordination chemistry. Chem. Soc. Rev.
2009, 38, 830-845; e) Crassous, J. Transfer of chirality to metal centers:
recent advances. Chem. Comm. 2012, 48, 9684-9692; f) Miyake, H.;
Tsukube, H. Coordination chemistry strategies for dynamic helicates: time-
programmable chirality switching with labile and inert metal helicates.
Chem. Soc. Rev. 2012, 41, 6977- 6991.
(10) a) Anger, E.; Srebro, M.; Vanthuyne, N.; Toupet, L.; Rigaut, S.;
Roussel, C.; Autschbach, J.; Crassous, J.; Réau, R. Ruthenium-
vinylhelicenes: remote metal-based tuning and redox switching of the
chiroptical properties of a helicene core. J. Am. Chem. Soc. 2012, 134,
15628-15631; b) Srebro, M.; Anger, E.; Moore, II, B.; Vanthuyne, N.;
Roussel, C.; Réau, R.; Autschbach, J.; Crassous, J. Ruthenium-grafted
Haberhauer, G.
A
Unidirectional Open-Close Mechanism of
ACS Paragon Plus Environment
10