Chemistry - A European Journal
10.1002/chem.201702812
COMMUNICATION
afforded -amino acid 29, which was saponified and coupled
auxiliaries, and features
a
high-yielding organocatalyzed
(
BEP) with peptide 26 (82%, two steps). Saponification of 30 went
-hydrazination. By employing BEP peptide coupling,
hemiasterlin (1) was obtained in a very efficient manner. A novel
phenonium-type rearrangement of the tert.-prenylated indole
system under Mitsunobu conditions was discovered.
smoothly. However, we were not able to obtain the free secondary
amine. Instead, treatment of the carboxylic acid with excess TFA
in the presence of air afforded a yellow product in good yield
(53%). An unprecedented retro Mannich reaction had occurred,
followed by oxidation of the resulting indole acetic acid moiety to
the 3-alkylidene indolone 31. In the H NMR spectrum, the amide
proton appeared as a sharp doublet at 11.18 ppm, indicating an
intramolecular hydrogen bond to the indolone oxygen.
Acknowledgements
J. H. L. thanks the Fonds der Chemischen Industrie for a doctoral
stipend.
1
Keywords: total synthesis, natural products, organocatalysis,
peptides, rearrangement.
In conclusion, we have developed a novel enantioselective route
to the sterically congested tetramethyltryptophan moiety of
hemiasterlin (1). Our approach encompasses 11 steps (31%
overall yield) starting from indole, avoids the use of chiral
[
1]
a) R. Talpir, Y. Benayahu, Y. Kashman, Tetrahedron Lett. 1994,
5, 4453-4456. b) P. Crews, J. J. Farias, R. Emrich, P. A. Keifer,
J. Org. Chem. 1994, 59, 2932-2934. c) J. E. Coleman, E. Dilip
de Silva, F. Kong, R. J. Andersen, Tetrahedron 1995, 51,
[13] a) A. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A.
Jørgensen, Angew. Chem. Int. Ed. 2002, 41, 1790-1783. b) J.
Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A.
Kjaersgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127,
18296-18304.
3
1
0653-10662.
[
[
2]
3]
H. J. Anderson, J. E. Coleman, R. J. Andersen, M. Roberge,
Cancer Chemother Pharmacol 1997, 39, 223-226.
[14] T. Kano, F. Shirozu, K. Maruoka, Org. Lett. 2014, 16, 1530-
1532.
[15] This conversion had not been possible when using
pyrrolidinyltetrazole 17 instead of (2R)-2-tritylpyrrolidine (14) as
catalyst, see: B. Maji, H. Yamamoto, Angew. Chem. Int. Ed.
2014, 53, 8714 –8717.
[16] a) S.-I. Murahashi, T. Shiota, Tetrahedron Lett. 1987, 28, 2383-
2386. b) T. Kano, H. Mii, K. Maruoka, J. Am. Chem. Soc. 2009,
131, 3450-3451.
a) R. Liyanage, B. C. Jayawardana, S. P. Kodithuwakku in
Comprehensive Supramolecular Chemistry, Vol. 5 (ed.: S.-K.
Kim), Wiley, Chichester, 2013, 323–349. b) C. M. Rocha-Lima,
S. Bayraktar, J. MacIntyre, L. Raez, A. M. Flores, A. Ferrell, E.
H. Rubin, E. A. Poplin, A. R. Tan, A. Lucarelli, N. Zojwalla,
Cancer 2012, 118, 4262-4270.
[
4]
a) R. J. Andersen, J. E. Coleman, Tetrahedron Lett. 1997, 38,
3
17-320. b) J. A. Nieman, J. E. Coleman, D. J. Wallace, E.
Piers, L. Y. Lim, M. Roberge, R. J. Andersen, J. Nat. Prod. 2003,
6, 183-199.
E. Vedejs, C. Kongkittingam, J. Org. Chem. 2001, 66, 7355-
364.
[17] a) A. J. A. Cobb, D. M. Shaw, S. V. Ley, Synlett 2004, 558-560.
b) V. Aureggi, V. Franckevičius, M. O. Kitching, S. V. Ley, D. A.
Longbottom, A. J. Oelke, G. Sedelmeier, Org. Synth. 2008, 85,
72-87.
[18] a) P. Kotrusz, S. Alemayehu. Š. Toma, H.-G. Schmalz, A. Adler,
Eur. J. Org. Chem. 2005, 4904-4911 b) A. Shigenaga, J.
Yamamoto, N. Nishioka, A. Otaka, Tetrahedron 2010, 66, 7367-
7372. c) D. G. Blackmond, A. Moran, M. Hughes, A. Armstrong,
J. Am. Chem. Soc. 2010, 132, 7598-7599. d) H. Huo, C. Fu, C.
Wang, K. Harms, E. Meggers, Chem. Commun. 2014, 50,
10409-10411.
[19] a) P. Magnus, N. Garizi, K. A. Seibert, A. Ornholt, Org. Lett.
2009, 11, 5646-5648. b) P. Magnus, A. J. Brozell, Org. Lett.
2012, 14, 3952-3954. c) J. Ferreira, S. C. M. Rees-Jones, V.
Ramaotsoa, A. Msutu, R. Hunter, Org. Biomol. Chem. 2016, 14,
1545-1549.
6
[
[
[
5]
6]
7]
7
R. Reddy, J. B. Jaquith, V. R. Neelagiri, S. Saleh-Hanna, T.
Durst, Org. Lett. 2002, 4, 695-697.
a) C. Liu, M. N. Masuno, J. B. MacMillan, T. F. Molinski, Angew.
Chem. Int. Ed. 2004, 43, 5951-5954. b) C. Liu, T. F. Molinski,
Chem. Asian J. 2011, 6, 2022-2027.
M. Kimura, M. Futamata, R. Mukai, Y. Tamaru, J. Am. Chem.
Soc. 2005, 127, 4592-4593.
a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem.
Rev. 1994, 94, 2483-2547. b) L. A. Paquette, L. Barriault, D.
Pissarnitski, J. Am. Chem. Soc. 1999, 121, 4542-4543. c) J. T.
Starr, G. Koch, E. M. Carreira, J. Am. Chem. Soc. 2000, 122,
[
[
8]
9]
8
793-8794.
[20] S. Dey, S. K. Gadakh, B. B. Ahuja, S. P. Kamble, A. Sudalai,
Tetrahedron Lett. 2016, 57, 684-687.
[21] S. P. Govek, L. E. Overman, Tetrahedron 2007, 63, 8499-8513.
[22] P. Barbie, U. Kazmaier, Org. Biomol. Chem. 2016, 14, 6036-
6054.
[
[
10] G. A. Crispino, K.-S. Jeong, H. C. Kolb, Z.-M. Wang, D. Xu, K.
B. Sharpless, J. Org. Chem. 1993, 58, 3785-3786.
11] HMBC correlations were observed between both methylene
hydrogen atoms and the indole C-3, yet missing between the
methyl hydrogens and the indole C-3.
[23] P. Li, J.-C. Xu, Tetrahedron 2000, 56, 8119-8131.
[
12] We also investigated the corresponding indoline lacking the
enamine moiety. Here, Mitsunobu reaction afforded alkenyl silyl
ethers instead (see the SI).
This article is protected by copyright. All rights reserved.