5260
S. Krompiec et al. / Tetrahedron Letters 45 (2004) 5257–5261
4200; (b) Barluenga, J.; Fernandez, M. A.; Aznar, F.;
Valdes, C. Chem. Commun. 2002, 2362–2363.
References and notes
21. Riviere, M.; Latters, A. Bull. Soc. Chim. Fr. 1972, 2, 730–
736.
22. Barrett, A.; Seefeld, M. Tetrahedron 1993, 49, 7857–
7870.
1. (a) Gema, D.; Casarrubios, L.; Rodriguez-Noriega J.
Helv. Chim. Acta 2002, 85, 2856–2861; (b) Couture, A.;
Deniau, E.; Grandclaudon, P.; Lebrun, S. Tetrahedron
Lett. 1996, 37, 7749–7752; (c) Naito, T.; Yuumoto, Y.;
Kiguchi, T.; Ninomiya, I. J. Chem. Soc., Perkin Trans. 1
1996, 281–288.
2. (a) Tsuda, Y.; Isobe, K.; Ukai, A. J. Chem. Soc., Chem.
Commun. 1971, 1554–1555; (b) Majima, T.; Pac, C.;
Chyongijin, S. J. Chem. Soc., Perkin Trans. 1 1980, 2705–
2708; (c) Bach, T. Angew. Chem., Int. Ed. Engl. 1996, 35,
884–885.
ꢀ
23. (a) Krompiec, S.; Suwinski, J.; Grobelny, J.; Wagner, P.
Pol. J. Chem. 1997, 71, 747–753; (b) Zhang, S.-W.;
Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet.
Chem. 1995, 485, 55–62.
24. Otsuka, S.; Tani, K. Synthesis 1991, 665–679.
25. Corriu, R.; Huynh, V.; Moreau, J.; Pataut-Sat, M.
J. Organomet. Chem. 1983, 225, 359–364.
26. Chapius, C. U.S. Patent 6,350,910, 2002.
3. Cook, G. R.; Barta, N. S.; Stille, J. R. J. Org. Chem. 1992,
57, 461–467.
4. Kinderman, S. S.; van Maarseveen, J. H.; Schoemaker, H.
E.; Hiemstra, H.; Rutjes, F. P. Org. Lett. 2001, 3, 2045–
2048.
5. (a) Saito, T.; Maeda, K.; Yamoda, S.; JP Patent 09143897,
1997; Chem. Abstr. 1997, 127, 110507; (b) Breitenbach, J.;
Schode, C.; Sigwart, C.; Mueller, U.; Hesse, M.; Negele,
A.; Ruebeuacker, M.; Eller, K. Ger. Offen. DE 19642490,
1998; Chem. Abstr. 1998, 128, 270985.
6. (a) Lenz, G. R. Synthesis 1978, 489–502; (b) Campbell, A.
L.; Lenz, G. R. Synthesis 1987, 421–452; (c) Meth-Cohn,
O.; Westwood, K. T. J. Chem. Soc., Perkin Trans. 1 1984,
1173–1182.
7. Baker, R. T.; Kristjansdottir, S. S. PCT Int. Appl. WO
9800399, 1998; Chem. Abstr. 1998, 128, 114574.
8. Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett.
2003, 5, 67–70.
9. Fisher, L. E.; Muchowski, J. M.; Clark, R. D. J. Org.
Chem. 1992, 57, 2700–2709.
27. (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis; John Wiley& Sons: New York, 1991;
(b) Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F.
Org. Lett. 2001, 3(23), 3781–3784; (c) Bertrand, M. P.;
Escoubet, S.; Gastaldi, S.; Timokhin, V. I. Chem. Com-
mun. 2002, 216–217.
28. Synthesis of (Z)-N-(1-propenyl) amides (general proce-
dure): N-Allyl amide (0.01 mol), {[RuCl2 (1,5-COD)]x}
(1 mol %), tri(2,4-di-t-butylphenyl) phosphite (1 mol %)
and CaH2 (10 mol %) in 5 cm3 THF were heated at
80 °C for 2 h (N-allylbenzamide: 90 °C/4 h, N-allylurea:
100 °C/1 h) under argon. After cooling to room tempera-
ture, 10 cm3 of a mixture of benzene–hexane (1:3) was
added. Precipitated ruthenium compounds and phosphine
were filtered off. The filtrate was purified bychromato-
graphyon a column containing 0.6 g of siliceous meso-
porous cellular foams. After evaporating the solvent, the
residue was distilled under reduced pressure. (N-(1-Prop-
enyl)urea was recrystallized from methanol). (Z)-N-(1-
Propenyl)ethanamide: (90 °C/10 mmHg). 1H NMR
(CDCl3): d ¼ 8:37 (d, J ¼ 6:9 Hz, –NH–CH@CHCH3),
6.66 (ddq, 1H, J ¼ 7:2, 6.9, 1.5 Hz, –NH–CH@CHCH3),
4.79 (dq, 1H, J ¼ 7:2, 6.6 Hz, –NH–CH@CHCH3), 2.10
(s, 3H, –CH3), 1.62 (dd, 3H, J ¼ 6:6, 1.5 Hz,
–NH–CH@CHCH3). 13C NMR (300 MHz, CDCl3):
d ¼ 168:5 (–COCH3); 122.0 (–CH@CHCH3); 106.0
(–CH@CHCH3); 23.0 (–COCH3); 11.1 (–CH@CHCH3).
MS (EI, 70 eV) m=z: Mþ ¼ 99 (13), 84 (3), 56 (100), 52 (2).
ꢀ
ꢀ
ꢀ
10. Riberau, P.; Delamare, M.; Celanire, S.; Queguiner, G.
Tetrahedron Lett. 2001, 42, 3571–3573.
11. (a) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139–
2145; (b) Delogu, G.; Faedda, G.; Gladiali, S. J. Organo-
met. Chem. 1984, 268, 167–174; (c) Cafmayer, J. T. Polym
Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1998, 39,
431–434; (d) Hubert, A. J.; Moniotte, P.; Goebbels, G.;
ꢀ
Warin, R.; Teyssie, P. J. Chem. Soc., Perkin Trans. 2 1973,
1954–1957; (e) Krompiec, S.; Pigulla, M.; Szczepankie-
wicz, W.; Bieg, T.; Kuznik, N.; Leszczynska-Sejda, K.;
Kubicki, M.; Borowiak, T. Tetrahedron Lett. 2001, 42,
7095–7098; (f) Krompiec, S.; Pigulla, M.; Bieg, T.;
ꢀ
29. Kuznik, N.; Krompiec, S.; Bieg, T.; Baj, S.; Skutil, K.;
Chrobok, A. J. Organomet. Chem. 2003, 665, 167–175.
30. Schmidt-Winkel, P.; Lukens, W. W., Jr.; Zhao, D.; Yang,
P.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1999,
121, 254–255.
ꢀ
Szczepankiewicz, W.; Kuznik, N.; Krompiec, M.;
Kubicki, M. J. Mol. Catal. A (Chem.) 2002, 189, 169–
185.
12. (a) Hubert, A. J.; Feron, A.; Goebbels, G.; Warin, R.;
31. Siliceous mesoporous cellular foams (MCFs) are a new
class of porous materials with spherical pores, which are
obtained using oil in water microemulsion as a template.
The preparation procedure has been described earlier.30
The texture parameters (specific surface area, SBET; pore
volume, Vp; diameter of cells, ds and diameter of intercon-
nected windows, dw) of calcined materials were obtained
using the nitrogen adsorption method. Nitrogen isotherms
were measured byMicromeritics ASAP 2000 instrument
at 77 K. Preparation of MCFs: In a typical procedure,
surfactant Pluronic PE 9600 (0.4 mmol) was dissolved in
1.6 M HCl (75 mL) at room temperature. 1,3,5-Trimeth-
ylbenzene (17 mmol) and NH4F (0.6 mmol) were added
under vigorous stirring and the mixture was heated to
333 K. Following 1 h of stirring, TEOS was added (4.4 g).
The mixture was stirred for 2 h and subsequentlystored at
333 K for 20 h and at 373 K for 24 h. After cooling to room
temperature, the precipitate was isolated byfiltration,
dried at room temperature for 4 days and calcined at
773 K for 8 h. Texture parameters of the calcined MCFs
were: SBET ¼ 650 m2/g, Vp ¼ 2:5 cm3/g, ds ¼ 30 nm and
dw ¼ 15 nm.
ꢀ
Teyssie, P. J. Chem. Soc., Perkin Trans. 2 1977, 11–14; (b)
Sergeyev, S.; Hesse, M. Synlett 2002, 8, 1313–1317.
13. Onishi, M.; Oishi, S.; Sakaguchi, M.; Takaki, I.; Hiraki,
K. Bull. Chem. Soc. Jpn. 1986, 59, 3925–3930.
14. Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K.
Bull. Chem. Soc. Jpn. 1981, 54, 1875–1876.
15. (a) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszko-
vicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207–222;
(b) Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem.
Soc. 1954, 76, 2029–2030.
16. Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy,
K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 19,
370–373.
17. Hickmott, P. W. Tetrahedron 1982, 38, 1975–2050.
18. Barluenga, J.; Aznar, F.; Liz, R.; Rodes, R. J. Chem. Soc.,
Perkin Trans. 1 1980, 2732–2737.
19. Petatis, N. A.; Lu, S. P. Tetrahedron Lett. 1995, 36, 2393–
2396.
20. (a) Prabhakaran, E. N.; Nugent, B. M.; Wiliams, A. L.;
Nailor, K. E.; Johnson, J. N. Org. Lett. 2002, 4(24), 4197–