COMMUNICATIONS
highly sophisticated catalysts,[4, 6] the experimental procedure
is extremely simple, because there is no need to quench the
catalyst (see Experimental Section). Partial racemization that
would result from using a catalyst is avoided. Furthermore,
the use of toxic and expensive catalysts that are difficult to
prepare is not necessary. This strategy, that is, pressure-
mediated substrate-catalyzed reactions might also be amena-
ble to other reactions (Michael, Mannich, Baylis Hillman),
which are accelerated by pressure.[12] Further work along
these lines is in progress.
C. Najera, P. Sanchez-Agullo, Tetrahedron: Asymmetry 1994, 5, 1393;
H. Sasai, Y. M. A. Yamada, T. Suzuki, M. Shibasaki, Tetrahedron 1994,
50, 12313; H. Sasai, N. Itoh, T. Suzuki, M. Shibasaki, Tetrahedron Lett.
1993, 34, 855; H. Sasai, T. Suzuki, N. Itoh,; M. Shibasaki, Tetrahedron
Lett. 1993, 34, 851; H. Sasai, T. Suzuki, S. Arai, M. Shibasaki, J. Am.
Chem. Soc. 1992, 114, 4.
[4] H. Sasai, W.-S. Kim, T. Suzuki, M. Shibasaki, M. Mitsuda, J.
Hasegawa, T. Ohashi, Tetrahedron Lett. 1994, 35, 6123, see also
references in [3] from this group.
[5] S. Hanessian, P. V. Devasthale, Tetrahedron Lett. 1996, 37, 987.
[6] E. J. Corey, F.-Y. Zhang, Angew. Chem. 1999, 111, 2057; Angew. Chem.
Int. Ed. 1999, 38, 1931.
[7] M. T. Reetz, Angew. Chem. 1991, 103, 1559; Angew. Chem. Int. Ed.
Engl. 1991, 30, 15.
[8] M. T. Reetz, M. W. Drews, A. Schmitz, Angew. Chem. 1987, 99, 1186;
Angew. Chem. Int. Ed. Engl. 1987, 26, 1141.
Experimental Section
[9] K. Matsumoto, Angew. Chem. 1984, 96, 599; Angew. Chem. Int. Ed.
Engl. 1984, 23, 617.
[10] For a review on stereoselective reactions under high pressure, see: G.
Jenner, Tetrahedron 1997, 53, 2669.
[11] The effect of pressure and solvent on the diastereoselectivity of
reactions under high pressure have been discussed extensively by
Tietze and co-workers; see: M. Buback, K. Gerke, C. Ott, L. F. Tietze,
Chem. Ber. 1994, 127, 2241; L. F. Tietze, M. Henrich, I. Rothert, G.
Kuchta, M. Buback, Pol. J. Chem. 1997, 71, 1749; M. Buback, G.
Kuchta, A. Niklaus, M. Henrich, I. Rothert, L. F. Tietze, Liebigs Ann.
1996, 1151; L. F. Tietze, M. Henrich, A. Niklaus, M. Buback, Chem.
Eur. J. 1999, 5, 297.
3a: A solution 1a (66 mg, 0.2mmol) and 2a (108 mL, 2.0 mmol) in
acetonitrile (3 mL) was placed in a sealed Teflon vessel. The reaction
mixture was stirred at room temperature under atmospheric pressure until
most of 1a had dissolved (5 min). The tube was placed in a high-pressure
reactor, and pressurized to 8 kbar at 258C. After 12h, the pressure was
released, and the reaction mixture was transferred from the Teflon vessel
into a flask. The solvent was removed under reduced pressure. The crude
products were purified by means of column chromatography (SiO2,
hexane/Et2O 10:1) to give the anti isomer 3a (52mg, 67%) and the syn
isomer (11 mg, 14%) (total yield 81%, anti/syn 83:17). The enantiomeric
excess was determined by means of HPLC analysis on DAICEL
CHIRALCEL OJ.
[12] For reviews of organic reactions under high pressure from our
laboratory, see: Organic Reactions at High Pressures (Eds.: K.
Matsumoto, R. M. Acheson), Wiley, New York, 1991; M. Ciobanu,
K. Matsumoto, Liebigs Ann. 1997, 623; K. Matsumoto, M. Kaneko, H.
Katsura, N. Hayashi, T. Uchida, R. M. Acheson, Heterocycles 1998, 47,
1135.
Received: October 4, 2001 [Z18018]
[1] For the most recent reviews on the Henry condensation, see: a) G.
Rosini in Comprehensive Organic Synthesis, Vol. 2 (Eds.: B. M. Trost,
I. Fleming, C. H. Heathcock), Pergamon, Oxford, 1991, pp. 321 340;
b) F. A. Luzzio, Tetrahedron 2001, 57, 915, and references therein.
[2] For recent examples of non-asymmetric nitro-aldol reactions based on
achiral catalysts and promoters, see: D. Simoni, R. Rondanin, M.
Morini, R. Baruchello, F. P. Invidiata, Tetrahedron Lett. 2000, 41, 1607;
S. W. Youn, Y. H. Kim, Synlett 2000, 880; R. Ballini, G. Bosica, M.
Parrini, Chem. Lett. 1999, 1105; T. Saiki, Y. Aoyama, Chem. Lett. 1999,
797; V. J. Bulbule, V. H. Deshpande, S. Velu, A. Sudalai, S. Sivasankar,
V. T. Sathe, Tetrahedron 1999, 55, 9325; G. Jenner, New J. Chem. 1999,
23, 525; H. M. S. Kumar, B. V. Subba Reddy, J. S. Yadav, Chem. Lett.
1998, 637; I. Morao, F. Cossio, Tetrahedron Lett. 1997, 38, 6461; R. S.
Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 1997, 38, 5131; D.
Simoni, F. P. Invidiata, S. Manfredini, R. Ferroni, I. Lampronti, G. P.
Pollini, Tetrahedron Lett. 1997, 38, 2749; R. Ballini, G. Bosica, J. Org.
Chem. 1997, 62, 425; R. Ballini, G. Bosica, P. Forconi, Tetrahedron
1996, 52, 1677; S. Kiyooka, T. Tsutsui, H. Maeda, Y. Kaneko, K. Isobe,
Tetrahedron Lett. 1995, 36, 6531; F. A. Luzzio, R. W. Ficth, Tetrahe-
dron Lett. 1994, 35, 6013; U. Costatino, M. Curini, F. Marmottini, O.
Rosati, E. Pisani, Chem. Lett. 1994, 2218; H. Sasai, S. Arai, M.
Shibasaki, J. Org. Chem. 1994, 59, 2661; R. Ballini, G. Bosica, J. Org.
Chem. 1994, 59, 5466.
[3] For recent examples of (diastereoselective) asymmetric nitro-aldol
reactions, see: A. V. Davis, M. Driffield, D. K. Smith, Org. Lett. 2001,
3, 3075; K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V. Gothelf,
A. K. Jorgensen, J. Am. Chem. Soc. 2001, 123, 5843; A. Menzel, R.
Ohrlein, H. Griesser, V. Wehner, V. Jager, Synthesis 1999, 1691; E.
Takaoka, N. Yoshikawa, Y. M. A. Yamada, H. Sasai, M. Shibasaki,
Heterocycles 1997, 46, 157; J. Oshida, M. Okamoto, S. Azuma, T.
Tanaka, Tetrahedron: Asymmetry 1997, 8, 2579; S. Hanessian, P. V.
Devasthale, Bioorg. Med. Chem. Lett. 1996, 6, 2201; K. Iseki, S. Oishi,
H. Sasai, M. Shibasaki, Tetrahedron Lett. 1996, 37, 9081; P. Magnus, P.
Pye, J. Chem. Soc. Chem. Commun. 1995, 1933; H. Sasai, S. Arai, Y.
Tahara, M. Shibasaki, J. Org. Chem. 1995, 60, 6656; H. Sasai, T.
Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M. Shibasaki, J. Org.
Chem. 1995, 60, 7388; A. P. Davis, K. J. Dempsey, Tetrahedron:
Asymmetry 1995, 6, 2829; T. Nataka, T. Komatsu, K. Nagasawa, H.
Yamada, T. Takahashi, Tetrahedron Lett. 1994, 35, 8225; R. Chinchilla,
Sigmatropic Shiftamers: Fluxionality in Broken
Ladderane Polymers**
Dean J. Tantillo and Roald Hoffmann*
Construction principles: Consider the hypothetical ladder
polymer 1-™[1]-ladderane.∫[1, 2] A formal [22] cyclorever-
sion would lead to 2 in which a local ™defect,∫ consisting of
two parallel p bonds, is formed. Cope rearrangement via a
boatlike transition structure would give 2', which is, of course,
equivalent to 2 (Scheme 1). Continued indefinitely, this
process would lead to a pair of double bonds running down
the polymer chain.
[*] Prof. R. Hoffmann, Dr. D. J. Tantillo
Department of Chemistry
Baker Laboratory
Cornell University, Ithaca NY 14853-1301 (USA)
Fax : (1)607-255-5707
[**] We gratefully acknowledge support from the National Science
Foundation (through research grant CHE 99-70089) and the National
Computational Science Alliance.
Supporting information for this article (Coordinates and energies for
computed structures from Scheme 2, as well as structures involved in
the Cope rearrangements of 6 and 7.) is available on the WWW under
Angew. Chem. Int. Ed. 2002, 41, No. 6
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4106-1033 $ 17.50+.50/0
1033