Published on Web 08/03/2009
Photochemical Generation and the Reactivity of
o-Naphthoquinone Methides in Aqueous Solutions
Selvanathan Arumugam and Vladimir V. Popik*
Department of Chemistry, UniVersity of Georgia, Athens, Georgia, 30602
Received April 29, 2009; E-mail: vpopik@chem.uga.edu
Abstract: Irradiation of 3-hydroxy-2-naphthalenemethanol (3a) and 2-hydroxy-1-naphthalenemethanol (4a)
results in efficient (Φ254 ) 0.17 and 0.20) dehydration and the formation of isomeric naphthoquinone
methides, 2,3-naphthoquinone-3-methide (1) and 1,2-naphthoquinone-1-methide (2), respectively. In
aqueous solution, naphthoquinone methides 1 and 2 undergo rapid hydration to regenerate starting materials
(τH2O (1) ) 7.4 ms and τH2O (2) ) 4.5 ms at 25 °C). The hydration reaction is strongly catalyzed by the
hydroxide ion but shows acid catalysis only at pH < 1. Reactive intermediates 1 and 2 can be intercepted
by other nucleophiles, such as the azide ion (kN3(1) ) 2.0 × 104 M-1 s-1 and kN3(2) ) 3.0 × 104 M-1 s-1
)
or thiol (kSH(1) ) 2.2 × 105 M-1 s-1 and kSH(2) ) 3.3 × 105 M-1 s-1). Ethyl vinyl ether readily reacts with
1 and 2 (kDA(1) ) 4.1 × 104 M-1 s-1 and kDA(2) ) 6.0 × 104 M-1 s-1) to produce Diels-Alder adducts in
excellent yield. o-Naphthoquinone methides 1 and 2 were also generated by photolysis of 3-ethoxymethyl-
(3b) and 1-(ethoxymethyl)-2-naphthols (4b), as well as from (2-hydroxy-3-naphthyl)methyl- (3c) and [(2-
hydroxy-1-naphthyl)methyl] trimethylammonium iodides (4c). Laser flash photolysis of 3a,b and 4a,b allows
the detection of short-lived (τ25°C ∼ 12 µs) precursors of naphthoquinone methides 1 and 2. On the basis
of the precursor reactivity and the results of DFT calculations, 2H-naphthoxete structure was assigned to
these species.
families.4 The reactivity of oQMs resembles that of R,ꢀ-
unsaturated ketones. The zwitterionic resonance form in the
Introduction
o-Quinone methides (oQMs) are important intermediates in
former, however, is additionally stabilized by aromatic conjuga-
tion (Scheme 1). Enhanced charge separation results in high
electrophilicity of the methide carbon atom, and also makes
Diels-Alder addition of electron-rich alkenes to oQMs very
facile.5
many chemical and biological processes.1,2 These reactive
species are efficient dDNA alkylating and cross-linking agents,3
and are believed to be responsible for the cytotoxicity of
antitumor antibiotics of the mitomycin C and anthracycline
oQMs can be conveniently generated by photochemical
dehydration of o-hydroxybenzyl alcohols and its analogues
(Scheme 1).1a,5a-c The loss of water from the excited state of
o-hydroxybenzyl alcohols is very fast and the formation of
oQMs is usually complete within a nanosecond laser pulse.5a-c
The mechanism of this reaction, however, is not yet fully
established. Since phenols and naphthols are very strong acids
in the excited state, it is proposed that the excitation of
o-hydroxybenzyl alcohols results in an excited state intramo-
lecular proton transfer (ESIPT) of a phenolic proton to an
oxygen atom in the benzylic position. The C-O bond heterolysis
might proceed in a concerted fashion with ESIPT. On the other
hand, there is some evidence that loss of water happens in the
ground state after proton transfer is complete.6 Our research
(1) (a) Wan, P.; Brousmiche, D. W.; Chen, C. Z.; Cole, J.; Lukeman, M.;
Xu, M. Pure Appl. Chem. 2001, 73, 529. (b) Wan, P.; Barker, B.;
Diao, L.; Fischer, M.; Shi, Y.; Yang, C. Can. J. Chem. 1996, 74, 465.
(c) Petet, M. G. Angew. Chem., Int. Ed. 1982, 94, 376. (d) Berson, J.
In The Chemistry of the Quinonoid Compounds; Patai, S., Rappoport,
Z., Eds.; Wiley: Chichester, 1988; Vol. 2, Part 1, pp 455-536; (e)
Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367.
(f) Fischer, M.; Shi, Y.; Zhao, B.-p.; Snieckus, V.; Wan, P. Can.
J. Chem. 1999, 77, 868. (g) Bulger, P. G.; Bagal, S. K.; Marquez, R.
Nat. Prod. Rep. 2008, 25, 254 and references therein.
(2) (a) Freccero, M. Mini-ReV. Org. Chem. 2004, 1, 403. (b) Lignins:
Occurrence, Formation, Structure and Reactions; Sarkanen, K. V.,
Ludving, C., Eds.; Wiley: New York, 1971; (c) Stowell, J. K.;
Widlanski, T. S.; Kutateladze, T. G.; Raines, R. T. J. Org. Chem.
1995, 60, 6930.
(3) (a) Wang, P.; Song, Y.; Zhang, L. X.; He, H. P.; Zhou, X. Curr. Med.
Chem. 2005, 12, 2893–2931. (b) Freccero, M.; Di Valentin, C.; Sarzi-
Amade, M. J. Am. Chem. Soc. 2003, 125, 3544–3553. (c) Weng, X.;
Ren, L.; Weng, L.; Huang, J.; Zhu, S.; Zhou, X.; Weng, L. Angew.
Chem., Int. Ed. Engl. 2007, 46, 8020. (d) Weinert, E. E.; Dondi, R.;
Colloredo-Melz, S.; Frankenfield, K. N.; Mitchell, C. H.; Freccero,
M.; Rokita, S. E. J. Am. Chem. Soc. 2006, 128, 11940. (e) Wang, P.;
Liu, R.; Wu, X.; Ma, H.; Cao, X.; Zhou, P.; Zhang, J.; Weng, X.;
Zhang, X.-L.; Qi, J.; Zhou, X.; Weng, L. J. Am. Chem. Soc. 2003,
125, 1116. (f) Richter, S. N.; Maggi, S.; Mels, S. C.; Palumbo, M.;
Freccero, M. J. Am. Chem. Soc. 2004, 126, 13973. (g) Colloredo-
Mels, S.; Doria, F.; Verga, D.; Freccero, M. J. Org. Chem. 2006, 71,
3889.
(4) Han, I.; Russell, D. J.; Kohn, H. J. Org. Chem. 1992, 57, 1799. (a)
Li, V.-S.; Kohn, H. J. Am. Chem. Soc. 1991, 113, 275. (b) Tomasz,
M.; Das, A.; Tang, K. S.; Ford, M. G. J.; Minnock, A.; Musser, S.;
Waring, M. J. J. Am. Chem. Soc. 1998, 120, 11581. (c) Egholm, M.;
Koch, T. H. J. Am. Chem. Soc. 1989, 111, 8291. (d) Gaudiano, G.;
Frigerio, M.; Bravo, P.; Koch, T. H. J. Am. Chem. Soc. 1990, 112,
6704.
(5) (a) Leo, E. A.; Delgado, J.; Domingo, L. R.; Espinos, A.; Miranda,
M. A.; Tormos, R. J. Org. Chem. 2003, 68, 9647. (b) Chiang, Y.;
Kresge, A. J.; Zhu, Y. J. Am. Chem. Soc. 2000, 122, 9854. (c) Diao,
L.; Yang, C.; Wan, P. J. Am. Chem. Soc. 1995, 117, 5369. (d) Wang,
H.; Wang, Y.; Han, K.-L.; Peng, X.-J. J. Org. Chem. 2005, 70, 4910.
9
11892 J. AM. CHEM. SOC. 2009, 131, 11892–11899
10.1021/ja9031924 CCC: $40.75 2009 American Chemical Society