Chemistry & Biology
Enzyme Inhibition by Hydroamination
¨
Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and
ACCESSION NUMBERS
˚
Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution.
The Protein Data Bank accession numbers for the proteasome binding com-
Nature 386, 463–471.
pounds 1, 3, 4, and 5 reported in this paper are 4HRD, 4HRC, 4HNP, and 4TLC.
Groll, M., Kim, K.B., Kairies, N., Huber, R., and Crews, C.M. (2000). Crystal
structure of epoxomicin:20S proteasome reveals a molecular basis for selec-
tivity of a,b-epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 122, 1237–
1238.
SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures,
30 figures, and 1 table and can be found with this article online at http://dx.
Groll, M., Schellenberg, B., Bachmann, A.S., Archer, C.R., Huber, R., Powell,
T.K., Lindow, S., Kaiser, M., and Dudler, R. (2008). A plant pathogen virulence
factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452,
755–758.
AUTHOR CONTRIBUTIONS
Groll, M., McArthur, K.A., Macherla, V.R., Manam, R.R., and Potts, B.C. (2009).
Snapshots of the fluorosalinosporamide/20S complex offer mechanistic in-
sights for fine tuning proteasome inhibition. J. Med. Chem. 52, 5420–5428.
D.B.B.T. conducted the inhibition assays; D.B.B.T. and M.L.S. the mechanistic
assays; D.B.B.T., M.L.S., and M.G. obtained the proteasome crystals,
collected the diffraction data and solved the structures; W.H.G. and A.R.P. de-
signed the compounds and with Y.K. synthesized the compounds; D.J.T.
carried out the in silico experiments; T.B. and F.A.V. performed the cell exper-
iments; B.S.M., W.H.G., A.R.P., and D.B.B.T. planned the experiments; all
authors analyzed and discussed the results; B.S.M., D.B.B.T., and W.H.G. pre-
pared the article with input from all authors.
Gross, H., McPhail, K.L., Goeger, D.E., Valeriote, F.A., and Gerwick, W.H.
(2010). Two cytotoxic stereoisomers of malyngamide C, 8-epi-malyngamide
C and 8-O-acetyl-8-epi-malyngamide C, from the marine cyanobacterium
Lyngbya majuscula. Phytochemistry 71, 1729–1735.
Hohenstein, E.G., Chill, S.T., and Sherrill, C.D. (2008). Assessment of the per-
formance of the M05-2X and M06-2X exchange-correlation functionals for
noncovalent interactions in biomolecules. J. Chem. Theory Comput. 4,
1996–2000.
ACKNOWLEDGMENTS
Huber, E.M., Basler, M., Schwab, R., Heinemeyer, W., Kirk, C.J., Groettrup,
M., and Groll, M. (2012). Immuno- and constitutive proteasome crystal
structures reveal differences in substrate and inhibitor specificity. Cell 148,
727–738.
This research was generously supported by the NIH (CA127622 to B.S.M. and
CA100851 to W.H.G. and F.A.V.), the German-Israeli Foundation for Scientific
Research and Development (GIF 23 1102/2010 to M.G.), and the Sao Paulo
Research Foundation (FAPESP 2011/21358-5 to D.B.B.T.).
Hultzsch, K.C. (2005). Catalytic asymmetric hydroamination of non-activated
olefins. Org. Biomol. Chem. 3, 1819–1824.
Kabsch, W. (2010). Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.
Received: December 7, 2013
Revised: March 13, 2014
Accepted: April 22, 2014
Published: June 12, 2014
Kisselev, A.F., van der Linden, W.A., and Overkleeft, H.S. (2012). Proteasome
inhibitors: an expanding army attacking a unique target. Chem. Biol. 19,
99–115.
Lo¨ we, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995).
REFERENCES
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at
˚
3.4 A resolution. Science 268, 533–539.
´
Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N.,
Marenich, A.V., Cramer, C.J., and Truhlar, D.G. (2009). Performance of SM6,
SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule
solvation free energies. J. Phys. Chem. B 113, 4538–4543.
Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010).
PHENIX: a comprehensive Python-based system for macromolecular struc-
ture solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.
Meng, L., Mohan, R., Kwok, B.H., Elofsson, M., Sin, N., and Crews, C.M.
(1999). Epoxomicin, a potent and selective proteasome inhibitor, exhibits
in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA 96, 10403–10408.
Arastu-Kapur, S., Anderl, J.L., Kraus, M., Parlati, F., Shenk, K.D., Lee, S.J.,
Muchamuel, T., Bennett, M.K., Driessen, C., Ball, A.J., and Kirk, C.J. (2011).
Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzo-
mib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743.
Mevers, E., Liu, W.T., Engene, N., Mohimani, H., Byrum, T., Pevzner, P.A.,
Dorrestein, P.C., Spadafora, C., and Gerwick, W.H. (2011). Cytotoxic veragua-
mides, alkynyl bromide-containing cyclic depsipeptides from the marine
cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod. 74, 928–936.
Beller, M., Seayad, J., Tillack, A., and Jiao, H. (2004). Catalytic Markovnikov
and anti-Markovnikov functionalization of alkenes and alkynes: recent devel-
opments and trends. Angew. Chem. Int. Ed. Engl. 43, 3368–3398.
Molineaux, S.M. (2012). Molecular pathways: targeting proteasomal protein
Bhat, T. (1988). Calculation of an OMIT map. J. Appl. Cryst. 21, 279–281.
degradation in cancer. Clin. Cancer Res. 18, 15–20.
Borissenko, L., and Groll, M. (2007). 20S proteasome and its inhibitors: crys-
Moore, B.S., Eusta´ quio, A.S., and McGlinchey, R.P. (2008). Advances in and
tallographic knowledge for drug development. Chem. Rev. 107, 687–717.
applications of proteasome inhibitors. Curr. Opin. Chem. Biol. 12, 434–440.
CCP4; Collaborative Computational Project, Number 4 (1994). The CCP4
Mu¨ ller, N., Falk, A., and Gsaller, G. (2004). Ball & Stick V.4.0a12, Molecular
Graphics Application for MacOS Computers. (Linz: Johannes Kepler
University).
suite: programs for protein crystallography. Acta Crystallogr.
D Biol.
Crystallogr. 50, 760–763.
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular
Murata, S., Yashiroda, H., and Tanaka, K. (2009). Molecular mechanisms of
graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.
proteasome assembly. Nat. Rev. Mol. Cell Biol. 10, 104–115.
Eusta´ quio, A.S., and Moore, B.S. (2008). Mutasynthesis of fluorosalinospora-
mide, a potent and reversible inhibitor of the proteasome. Angew. Chem. Int.
Ed. Engl. 47, 3936–3938.
Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macro-
molecular structures by the maximum-likelihood method. Acta Crystallogr.
D Biol. Crystallogr. 53, 240–255.
Gallastegui, N., and Groll, M. (2012). Analysing properties of proteasome inhib-
itors using kinetic and X-ray crystallographic studies. Methods Mol. Biol. 832,
373–390.
Pereira, A.R., Kale, A.J., Fenley, A.T., Byrum, T., Debonsi, H.M., Gilson, M.K.,
Valeriote, F.A., Moore, B.S., and Gerwick, W.H. (2012). The carmaphycins:
new proteasome inhibitors exhibiting an a,b-epoxyketone warhead from a
marine cyanobacterium. ChemBioChem 13, 810–817.
Goldberg, A.L. (2007). Functions of the proteasome: from protein degradation
and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17.
Schlummer, B., and Hartwig, J.F. (2002). Brønsted acid-catalyzed intramolec-
ular hydroamination of protected alkenylamines. Synthesis of pyrrolidines and
piperidines. Org. Lett. 4, 1471–1474.
Groll, M., and Huber, R. (2005). Purification, crystallization, and X-ray analysis
of the yeast 20S proteasome. Methods Enzymol. 398, 329–336.
790 Chemistry & Biology 21, 782–791, June 19, 2014 ª2014 Elsevier Ltd All rights reserved