Please do not adjust margins
Green Chemistry
Page 4 of 5
DOI: 10.1039/C5GC01333J
COMMUNICATION
of the IL and the unsaturated Cu2+ sites of the MOF.
Journal Name
10 K. M. L. Taylor-Pashow, J. Della Rocca, Z. G. Xie, S. Tran and
W. B. Lin, J. Am. Chem. Soc., 2009, 131, 14261.
11 A. Dhakshinamoorthy and H. Garcia, Chem. Soc. Rev., 2012,
41, 5262.
12 H. Ri Moon, D. Lim and M. Paik Suh, Chem. Soc. Rev., 2013,
42, 1807.
13 H. Liu, Y. Liu, Y. Li, Z. Tang and H. Jiang, J. Phys. Chem. C,
2010, 114, 13362.
14 Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J.
Kim, A. Vimont, M. Daturi, C. Serre and G. Ferey, Angew.
Chem. Int. Ed., 2008, 47, 4144.
N
Simultaneously, the IL immobilized on the MOF support interacts
with Pd nanoparticles. Therefore, the IL microphase supplies an
excellent environment for preventing the aggregation or growth of
Pd nanoparticles and small Pd nanoparticles (about 2 nm) could be
finely dispersed on MOF. The small Pd nanoparticles stabilized by IL
and the porous MOF structure co-contribute to the high catalytic
activity of Pd/IL/MOF in phenylacetylene hydrogenation. On one
hand, the small size of Pd nanoparticles is favorable to increase the
density of catalytic active sites,38-39 thus accelerate the reaction
efficiently. On the other hand, the porous structure of MOF can
facilitate the diffusion of substrates and products because of large
surface area, and thus accelerate the reaction rate.12
15 P. S. Barber, C. S. Griggs, G. Gurau, Z. Liu, S. Li, Z. Li, X. Lu, S. J.
,
Zhang and R. D. Rogers, Angew. Chem. Int. Ed., 2013, 52
12350.
16 G. Gebresilassie Eshetu, M. Armand, B. Scrosati and S.
Passerini, Angew. Chem. Int. Ed., 2014, 53, 13342.
17 J. Theuerkauf, G. Franciò and W. Leitner, Adv. Syn. Catal.,
2013, 355, 209.
18 U. Hintermair, T. Höfener, T. Pullmann, G.Franciò and W.
Leitner, ChemCatChem, 2010, 2, 150.
19 G. Gurau, H. Rodriguez, S. P. Kelley, P. Janiczek, R. S. Kalb and
R. D. Rogers, Angew. Chem. Int. Ed., 2011, 50, 11421.
20 S. J. Zhang, J.Sun, X. Zhang, J. Xin, Q. Miao, J. Wang, Chem.
Soc. Rev., 2014, 43, 7838.
21 J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and
G. Zhao, Angew. Chem. Int. Ed., 2004, 43, 1397.
22 L. Sun, J. Li, J. Park and H. -C. Zhou, J. Am. Chem. Soc., 2012,
134, 126.
23 S. Domínguez-Domínguez, Á. Berenguer-Murcia, B. K.
Pradhan, Á. Linares-Solano and D. Cazorla-Amorós, J. Phys.
Chem. C, 2008, 112, 3827.
Scheme 1 Structure of Pd/IL/MOF catalyst and its catalytic activity for the
selective hydrogenation of phenylacetylene.
24 J. Hermannsdörfer and R. Kempe, Chem. Eur. J., 2011, 17
8071.
25 R. Chinchilla and C. Nájera, Chem. Rev., 2014, 114, 1783.
26 D. Deng, Y. Yang, Y. Gong, Y. Li, X. Xu and Y. Wang, Green
Chem., 2013, 15, 2525.
27 Y. Yabe, T. Yamada, S. Nagata, Y. Sawama, Y. Monguchi and
H. Sajiki, Adv. Synth. Catal., 2012, 354, 1264.
28 W. Long, N. A. Brunelli, S. A. Didas, E. W. Ping and C. W.
Jones, ACS Catal., 2013, 3, 1700.
29 H. Sajiki, S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa
and Y. Monguchi, Chem. Eur. J., 2008, 14, 5109.
,
In summary, we designed
a Pd/IL/MOF catalyst by taking
advantage of the IL microphase. IL could stabilize the Pd
nanoparticles and highly dispersed small metal nanoparticles are
immobilized on MOF. The Pd/IL/MOF catalyst shows excellent
catalytic activity and high selectivity for the hydrogenation of
terminal alkynes. The synthetic route for the Pd/IL/MOF catalysts is
simple and can be applied to the synthesis of different kinds of
MOF-supported metal nanoparticles. We anticipate that other high
efficient heterogeneous catalysts stabilized by IL microphase can be
designed for various catalytic reactions.
30 Y. Gao, C. Chen, H. Gau, J. A. Bailey, E. Akhadov, D.Williams
and H. Wang, Chem. Mater., 2008, 20, 2839.
The authors thank the National Natural Science Foundation of
China (21173238, 21133009, U1232203, 21021003), Chinese
Academy of Sciences (KJCX2.YW.H16).
31 T. Mizugaki, M. Murata, S. Fukubayashi, T. Mitsudome, K.
Jitsukawa and K. Kaneda, Chem. Commun., 2008, 241.
32 S. Gu Kwon, G. Krylova, A. Sumer, M. M. Schwartz, E. E.
Bunel, C. L. Marshall, S. Chattopadhyay, B. Lee, J. Jellinek, E.
V. Shevchenko, Nano Lett., 2012, 12, 5382.
33 P. Zhang, T. B. Wu and B. X. Han, Adv. Mater., 2014, 26
6810.
34 S. Yang, C. Cao, Y. Sun, P. Huang, F. Wei and W. Song, Angew.
Chem. Int. Ed., 2015, 54, 2661.
35 Z. -L. Wang, J. -M. Yan, H. -L. Wang, Y. Ping and Q. Jiang, J.
,
Notes and references
1
M. C. Das, S. Xiang, Z. Zhang and B. Chen, Angew. Chem. Int.
Ed., 2011, 50, 10510.
2
J. -R. Li, J. Sculley and H. -C. Zhou, Chem. Rev., 2012, 112
869.
N. Stock and S. Biswas, Chem. Rev., 2012, 112, 933.
S. Jin, H. -J. Son, O. K. Farha, G. P. Wiederrecht and J. T.
Hupp. J. Am. Chem. Soc., 2013, 135, 955.
,
Mater. Chem. A, 2013,
36 G. Hao, G. Mondin, Z. Zheng, T. Biemelt, S. Klosz, R. Schubel,
1, 12721.
3
4
A. Eychmüller and S. Kaskel, Angew. Chem. Int. Ed., 2015, 54
1941.
37 T. Miao and L. Wang, Tetrahedron Lett., 2007, 48, 95.
38 Y. Zhang, X. J. Cui, F. Shi and Y. Q. Deng, Chem. Rev., 2012,
112, 2467.
,
5
6
7
C. M. Doherty, D. Buso, A. J. Hill, S. Furukawa, S. Kitagawa
and P. Falcaro, Acc. Chem. Res., 2014, 47, 396.
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-Y. Su, Chem.
Soc. Rev., 2014, 43, 6011.
W. L. Queen, E. D. Bloch, C. M. Brown, M. R. Hudson, J. A.
Mason, L. J. Murray, A. Javier Ramirez-Cuesta, V. K. Peterson
and J. R. Long,Dalton Trans., 2012, 41, 4180.
39 X. Liu, L. He, Y. -M. Liu and Y. Cao, Acc. Chem. Res., 2014, 47
793.
,
8
9
W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson
and O. M. Yaghi, J. Phys. Chem. C, 2011, 115, 24915.
S. T. Meek, J. A. Greathouse and M. D. Allendorf, Adv. Mater.,
2011, 23, 249.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins