R. Dumeunier, I. E. Markꢀo / Tetrahedron Letters 45 (2004) 825–829
829
(b) Brown, H. C.; Kanner, B. J. Am. Chem. Soc. 1966, 88,
986–992; (c) Brown, H. C.; Kanner, B. J. Am. Chem. Soc.
1953, 75, 3865.
with enlightening suggestions and samples of metal tri-
flates. I.E.M. is grateful to Rhodia for the 2001 Rhodia
Outstanding Award.
7. Since up to three equivalents of triflic acid could theoret-
ically be generated per metal triflate, we have decided to
use a 1:3 ratio of metal complex/DTBMP. However, even
one equivalent of the hindered base is sufficient to
significantly reduce the rate of these acylation reactions
(Table 2, entry 5).
8. Competitive elimination has also been observed in the
metal triflate acylation of several allylic and tertiary
alcohols (see Refs. 2a, g, i, j).
References and notes
1. (a) Green, W.; Wuts, P. G. M. In Protective Groups in
Organic Synthesis, 3rd ed.; John Wiley: New York, 1999; p
150; (b) Larock, R. C. Comprehensive Organic Transforma-
tions; VCH Publishers: New York, 1989; p 980; (c) Zhdanov,
R. I.; Zhenodarova, S. M. Synthesis 1975, 222–245.
2. (a) Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. J. Org.
Chem. 2001, 66, 8926–8934; (b) Mohammadpoor-Baltork,
I.; Aliyan, H.; Khosropour, A. R. Tetrahedron 2001, 57,
5851–5854; (c) Orita, A.; Tanahashi, C.; Kakuda, A.;
Otera, J. Angew. Chem., Int. Ed. 2000, 39, 2877–2879; (d)
Chauhan, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett
1999, 1743–1744; (e) Saravanan, P.; Singh, V. K. Tetra-
hedron Lett. 1999, 40, 2611–2614; (f) Zhao, H.; Pendri, A.;
Greenwald, R. B. J. Org. Chem. 1998, 63, 7559–7562; (g)
Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G.
G. A. J. Org. Chem. 1998, 63, 2342–2347; (h) Mikami, K.;
Kotera, O.; Motoyama, Y.; Sakaguchi, H.; Maruta, M.
Synlett 1996, 171–172; (i) Ishihara, K.; Kubota, M.;
Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61,
4560–4567; (j) Ishihara, K.; Kubota, M.; Kurihara, H.;
Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 4413–4414.
3. (a) Fujiwara, K.; Murai, A.; Yamashita, M.-Y.; Yasu-
moto, T. J. Am. Chem. Soc. 1998, 120, 10770–10771; (b)
Paquette, L. A.; Barriault, L.; Pissarnitski, D. J. Am.
Chem. Soc. 1999, 121, 4542–4543; (c) White, J. D.;
Blakemore, P. R.; Browder, C. C.; Hong, J.; Lincoln, C.
M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J. J.
Am. Chem. Soc. 2001, 123, 8593–8595.
9. The 2:1 ratio of (H2O/TfOH) was deduced from the ratio
of acylated adduct versus elimination product.
10. Triflic acid has been used, and sometimes demonstrated to
be the active species, in several catalytic processes: (a)
Kotsuki, H.; Arimura, K.; Ohishi, T.; Maruzasa, R. J. Org.
Chem. 1999, 64, 3770–3773; (b) Kotsuki, H.; Ohishi, T.;
Inoue, M.; Kojima, T. Synthesis 1999, 603–606; (c)
Kotsuki, H.; Arimura, K.; Araki, T.; Shinohara, T.
ꢀ
Synlett 1999, 462–464; (d) Repichet, S.; Le Roux, C.;
Dubac, J.; Desmurs, J.-R. Eur. J. Org. Chem. 1998, 2743–
2746; (e) Laurent-Robert, H.; Le Roux, C.; Dubac, J.
Synlett 1998, 1138–1140; (f) Tsuchimoto, T.; Tobita, K.;
Hiyama, T.; Fukuzawa, S.-I. J. Org. Chem. 1997, 62,
6997–7005, see also Ref. 2g.
11. For reasons of clarity, only one benzoate is shown on the
metal. However, it is quite possible that several species,
formed by the exchange of one, two or three triflate
ligands might be involved in these catalytic processes.
12. For a catalytic version of the Friedel–Crafts acylation
using triflic acid and proceeding via the acyl triflate
intermediate, see: Effenberger, F.; Epple, G. Angew.
Chem., Int. Ed. 1972, 11, 300.
13. Brown, L.; Koreeda, M. J. Org. Chem. 1984, 49, 3875–
3880.
14. As with TfOH, a second aliquot of 12 (7 mol %) had to be
added after 18 h to reach full completion.
4. See, for example: Keck, G. E.; Savin, K. A.; Weglarz, M.
A. J. Org. Chem. 1995, 60, 3194–3204.
5. The deprotection of various silyl ethers using Sc(OTf)3, in
the presence of H2O, has been reported previously:
Oriyama, T.; Kobayashi, Y.; Noda, K. Synlett 1998,
1047–1048; For pKa studies, see: Castellani, C. B.; Carugo,
O.; Giusti, M.; Leopizzi, C.; Perotti, A.; Invernizzi, A. G.;
Vidari, G. Tetrahedron 1996, 52, 11045–11052.
15. It is important to note that the triflate salt of DTBMP
does not catalyse the acylation reaction.
16. The results of the stoichiometric acylation appear to
suggest that one triflate ligand is released initially from the
metal and that catalysts such as MeCOOSc(OTf)2 are
poorly active. Indeed, if only one triflate is exchanged, the
maximum yield of acetate 18 should be 33%.
6. (a) Balaban, T. S.; Unuta, C.; Gheorghiu, M. O.;
Balaban, A. T. Tetrahedron Lett. 1985, 26, 4669–4672;