E.C.B.A. Alegria et al. / Applied Catalysis A: General 443–444 (2012) 27–32
31
The use of 1,2-dichloroethane as solvent leads to the highest
activity for all ketones, but compounds 1 and 9 (the most active
ones) can even operate in water as the only solvent.
The replacement of 1,2 DCE solvent by a mixed organic/water
medium deserves to be further explored by application of hydro-
soluble compounds, since it is particularly important for the
development of a green BV system.
500
400
300
200
100
0
Acknowledgements
This work has been partially supported by the Fundac¸ ão
para
a Ciência e a Tecnologia (FCT), Portugal, and projects
PTDC/QUI-QUI/102150/2008, PTDC-EQU-EQU-122025-2010 and
PEst-OE/QUI/UI0100/2011.
0
6
12
18
24
30
Time (h)
Appendix A. Supplementary data
Fig. 2. Effect of the reaction time on TON in the BV oxidation of 2-
methylcyclohexanone (—), 2-methylcyclopentanone (- - -) and cyclopentanone
(– –), catalysed by [ReOCl3(PPh3)2] 9 and [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] 2 (ꢀ).
Reaction conditions are those of Table S2 entries.
Supplementary data associated with this article can be
2012.07.007.
References
any peroxo intermediates. For pinacolone, a different behaviour
was observed, since medium temperatures are more preferable.
Hence, 50 ◦C seems to be the most adequate temperature for this
system (see entries 47–50, Table S1), whereas at 100 ◦C no products
are observed. On the other hand, its oxidation at room temper-
ature (although in a small extent, see entry 47, Table S1) can be
performed.
[1] T. Seiser, T. Saget, D.N. Tran, N. Cramer, Angew. Chem. Int. Ed. 50 (2011)
7740–7752.
[2] P. Jin, L. Zhu, D. Wei, M. Tang, X. Wang, Comput. Theor. Chem. 966 (2011)
207–212.
[3] R.A. Michelin, P. Sgarbossa, A. Scarso, G. Strukul, Coord. Chem. Rev. 254 (2010)
646–660.
[4] F. Cavani, K. Raabova, F. Bigi, C. Quarantelli, Chem. Eur. J. 16 (2010)
12962–12969.
[5] A. Cavarzan, A. Scarso, P. Sgarbossa, R.A. Michelin, G. Strukul, ChemCatChem 2
(2010) 1296–1302.
[6] A. Cavarzan, G. Bianchini, P. Sgarbossa, L. Lefort, S. Gladiali, A. Scarso, G. Strukul,
Chem. Eur. J. 15 (2009) 7930–7939.
3.3. Effect of type of solvent
[7] G. Bianchini, A. Cavarzan, A. Scarso, G. Strukul, Green Chem. 11 (2009)
1517–1520.
[8] C. Jiménez-Sanchidrián, J.R. Ruiz, Tetrahedron 64 (2008) 2011–2026.
[9] S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew. Chem. Int. Ed. 47 (2008)
2840–2843.
[10] A.O. Terent’ev, M.M. Platonov, A.S. Kashin, G.I. Nikishin, Tetrahedron 64 (2008)
[11] G. Greggio, P. Sgarbossa, A. Scarso, R.A. Michelin, G. Strukul, Inorg. Chim. Acta
361 (2008) 3230–3236.
[12] P. Sgarbossa, M.F.C. Guedes da Silva, A. Scarso, R.A. Michelin, A.J.L. Pombeiro,
Inorg. Chim. Acta 361 (2008) 3247–3253.
[13] P. Sgarbossa, A. Scarso, E. Pizzo, A.M. Sbovata, A. Tassan, R.A. Michelin, G.
Strukul, J. Mol. Catal. A: Chem. 261 (2007) 202–206.
[14] Q.H. Zhang, S.F. Wang, Z.Q. Lei, Chin. Chem. Lett. 18 (2007) 4–6.
[15] P. Sgarbossa, A. Scarso, R.A. Michelin, G. Strukul, Organometallics 26 (2007)
2714–2719.
[16] Z.Q. Lei, Q.H. Zhang, J.J. Luo, Tetrahedron Lett. 46 (2005) 3505–3508.
[17] V. Conte, B. Floris, P. Galloni, V. Mirruzzo, A. Scarso, D. Sordi, G. Strukul, Green
Chem. 7 (2005) 262–266.
1,2-Dichloroethane was chosen as the typical solvent for our
systems due to its high resistance to oxidizing agents and also in
view of the good solubility of both catalysts and substrates. It has
also been used in other cases as the most appropriate solvent for
similar Baeyer–Villiger oxidations [15].
Replacement of 1,2-dichloroethane by other solvents resulted,
product yield lowered drastically from 26% (entry 18, Table S1)
in 1,2-dichloroethane to 1%, 0.2%, 8% or 5% in acetonitrile,
water, dichloromethane or methanol, respectively (entries 19–22,
Table S1). Moreover, the use of acetonitrile for the oxidation of
pinacolone results in a complete inhibiting effect.
[18] G.-J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, Chem. Rev. 104 (2004) 4105–4123.
[19] A. Brunetta, G. Strukul, Eur. J. Inorg. Chem. 43 (2004) 1030–1038.
[20] A. Corma, M.T. Navarro, L. Nemeth, M. Renz, J. Catal. 219 (2003) 242–246.
[21] R. Bernini, A. Coratti, G. Fabrizib, A. Goggiamani, Tetrahedron Lett. 44 (2003)
8991–8994.
4. Conclusions
This study has contributed towards the development of the still
little explored application of Re compounds as catalyst and/or cat-
alyst precursor for the oxidation of ketones to the respective esters
or lactones, under relatively mild conditions and with an environ-
mentally friendly oxidant (H2O2).
[22] G. Strukul, Top. Catal. 19 (2002) 33–42.
[23] T. Uchida, T. Katsuki, Tetrahedron Lett. 42 (2001) 6911–6914.
[24] Y. Peng, X. Feng, K. Yu, Z. Li, Y. Jiang, C.-H. Yeung, J. Org. Chem. 619 (2001)
204–208.
[25] G. Strukul, Nature 412 (2001) 388–389.
In general, it was observed that the Re compounds are more
active for the oxidation of cyclic (4-, 5- and 6-membered rings)
than for the acyclic ketones, consistent with the common lower
reactivity of the latter ketones.
[26] M. Renz, B. Meunier, Eur. J. Org. Chem. 4 (1999) 737–750.
[27] G. Strukul, Angew. Chem. 110 (1998) 1256–1267;
G. Strukul, Angew. Chem. Int. Ed. 37 (1998) 1198–1209.
[28] K. Kaneda, S. Ueno, ACS Symp. Ser. 638 (1996) 300–318.
[29] M. Hamamoto, N. Nakayama, Y. Nishiyama, Y. Ishii, J. Org. Chem. 58 (1993)
6421.
[30] C. Bolm, G. Schlingloff, K. Weickhardt, Tetrahedron Lett. 34 (1993) 3405–3408.
[31] J.M. Robinson, “Lactones as new oxygenate fuel additives, fuels based thereon
and methods for using same”, US Patent Application 2006/0096,158 (2006).
[32] P. Kraft, “Macrocyclic lactones as fragrances” World Intellectual Property Orga-
nization, WO/2009/039675, European Patent EP 2205581 (2012).
[33] M. Weigele, M.F. Loewe, “Lactones and their pharmaceutical applications”,
World Intellectual Property Organization, WO/1994/017056 (1994).
[34] P. Magiatis, S. Mitaku, A. Skaltsounis, F. Tillequin, A. Pierré, G. Atassi, Nat. Prod.
Lett. 14 (2000) 183–190.
The ReV benzoyl-hydrazido [ReCl2{2-N,O-C(O)Ph}(PPh3)2] 1
and oxo-chloro [ReOCl3(PPh3)2]
9 complexes are the most
active catalysts under the studied conditions for the oxidation
of 2-methylcyclohexanone, cyclopentanone and cyclobutanone,
whereas the ReIV acetonitrile complex [ReCl4(NCMe)2] 6 and the
ReIII tris(pirazolyl)methane compound [ReCl3{HC(pz)3}] 4 are the
most active ones for 2-methylcyclopentanone and cyclohexanone
or pinacolone BV oxidations, respectively.