10.1002/anie.201702744
Angewandte Chemie International Edition
COMMUNICATION
Figure 3. Neutralization of CEES monitored by an in-line NMR system. (Top
and middle) two NMR spectra recorded at different tR. Note that the peak with a
* corresponds to a 13C satellite line from the residual solvent signal at 3.3 ppm.
(Bottom) Percentage of CEESO as a function of the residence time.
[23] X. Liu, K. F. Jensen, Green Chem. 2013, 15, 1538–1541.
[24] M. Peer, N. Weeranoppanant, A. Adamo, Y. Zhang, K. F. Jensen, Org.
Process Res. Dev. 2016, 20, 1677–1685.
[25] S. S. Zalesskiy, E. Danieli, B. Blümich, V. P. Ananikov, Chem. Rev. 2014,
114, 5641–5694.
[26] D. C. Fabry, E. Sugiono, M. Rueping, React. Chem. Eng. 2016, 1, 129–
133.
Acknowledgements
[27] A. M. R. Hall, J. C. Chouler, A. Codina, P. T. Gierth, J. P. Lowe, U.
Hintermair, Catal. Sci. Technol. 2016, 6, 8406–8417.
The authors gratefully acknowledge support from the CNRS
« Attentats Recherche » program. J.L. is grateful to Dr M. De
Paolis and Dr I. Decostaire for fruitful discussions. The authors
from Normandie Université also thank the Labex SYNORG (ANR-
11-LABX-0029), the Région Normandie (MicroChim Project and
CRUNCh network) and the European France (Manche)–England
cross-border cooperation program INTERREG IV A “AI-CHEM
CHANNEL” co-financed by ERDF for support. The authors from
the University of Nantes acknowledge the Région Pays de la Loire
(grant RésoNantes) for financial support. FXF and PG are
members of the Institut Universtaire de France (IUF).
[28] K. S. Ravikumar, J.-P. Bégué, D. Bonnet-Delpon, Tetrahedron Lett. 1998,
39, 3141–3144.
[29] K. Neimann, R. Neumann, Org. Lett. 2000, 2, 2861–2863.
[30] J. Legros, B. Crousse, D. Bonnet-Delpon, J. Bégué, Eur. J. Org. Chem.
2002, 3290–3293.
[31] D. Vuluga, J. Legros, B. Crousse, A. M. Z. Slawin, C. Laurence, P. Nicolet,
D. Bonnet-Delpon, J. Org. Chem. 2011, 76, 1126–1133.
[32] A. Berkessel, J. A. Adrio, D. Hüttenhain, J. M. Neudörfl, J. Am. Chem.
Soc. 2006, 128, 8421–8426.
[33] J. Lavoie, S. Srinivasan, R. Nagarajan, J. Hazard. Mater. 2011, 194, 85–
91.
[34] S. Y. Bae, M. D. Winemiller, J. Org. Chem. 2013, 78, 6457–6470.
[35] C. Reichardt, Chem. Rev. 1994, 94, 2319–2358.
[36] C. Laurence, J. Legros, A. Chantzis, A. Planchat, D. Jacquemin, J. Phys.
Chem. B 2015, 119, 3174–3184.
Keywords: chemical warfare agent • hydrogen peroxide •
oxidation • benchtop NMR spectrometry • continuous flow
[37] Same results were obtained with ethanol as solvent.
[38] The full selectivity relies on a favorable reaction rate for the sulfoxidation
with respect to the sulfonation under these specific conditions provided
to stop the reaction at a short residence time of 3.9 min: increasing
temperature (40 °C), UHP amount (2.6 eq) or residence time (8 min)
afforded 5-10% sulfone.
[1]
[2]
[3]
[4]
[5]
O. Meier, SWP Comments 2016, 3, 1–4.
R. Weitz, Prolif. Pap. 2014, 51.
Y. C. Yang, J. A. Baker, J. R. Ward, Chem. Rev. 1992, 92, 1729–1743.
B. M. Smith, Chem. Soc. Rev. 2008, 37, 470–478.
K. Kim, O. G. Tsay, D. A. Atwood, D. G. Churchill, Chem. Rev. 2011, 111,
5345–5403.
[39] E. Danieli, J. Perlo, A. L. L. Duchateau, G. K. M. Verzijl, V. M. Litvinov,
B. Blümich, F. Casanova, ChemPhysChem 2014, 15, 3060–3066.
[40] M. H. M. Killner, Y. Garro Linck, E. Danieli, J. J. R. Rohwedder, B.
Blümich, Fuel 2015, 139, 240–247.
[6]
Y. J. Jang, K. Kim, O. G. Tsay, D. A. Atwood, D. G. Churchill, Chem. Rev.
2015, 115, PR1-PR76.
[7]
[8]
[9]
F. M. Menger, A. R. Elrington, J. Am. Chem. Soc. 1991, 113, 9621–9624.
F. M. Menger, M. J. Rourk, Langmuir 1999, 15, 309–313.
F. Gonzaga, E. Perez, I. Rico–Lattes, A. Lattes, New J. Chem. 2001, 25,
151–155.
[41] C. A. McGill, A. Nordon, D. Littlejohn, Analyst 2002, 127, 287–292.
[42] B. Gouilleux, B. Charrier, S. Akoka, F.-X. Felpin, M. Rodriguez-Zubiri, P.
Giraudeau, TrAC Trends Anal. Chem. 2016, 83, 65–75.
[43] V. Sans, L. Porwol, V. Dragone, L. Cronin, Chem. Sci. 2015, 6, 1258–
1264.
[10] G. W. Wagner, L. R. Procell, Y.-C. Yang, C. A. Bunton, Langmuir 2001,
17, 4809–4811.
[44] F. Dalitz, M. Cudaj, M. Maiwald, G. Guthausen, Prog. Nucl. Magn. Reson.
Spectrosc. 2012, 60, 52–70.
[11] C. R. Ringenbach, S. R. Livingston, D. Kumar, C. C. Landry, Chem.
Mater. 2005, 17, 5580–5586.
[45] A. Nordon, C. A. McGill, D. Littlejohn, Analyst 2001, 126, 260–272.
[46] B. Gouilleux, B. Charrier, S. Akoka, P. Giraudeau, Magn. Reson. Chem.
2017, 55, 91–98.
[12] I. A. Fallis, P. C. Griffiths, T. Cosgrove, C. A. Dreiss, N. Govan, R. K.
Heenan, I. Holden, R. L. Jenkins, S. J. Mitchell, S. Notman, et al., J. Am.
Chem. Soc. 2009, 131, 9746–9755.
[47] E. Danieli, J. Perlo, B. Blümich, F. Casanova, Angew. Chem. Int. Ed.
2010, 49, 4133–4135.
[13] F. Carniato, C. Bisio, R. Psaro, L. Marchese, M. Guidotti, Angew. Chem.
Int. Ed. 2014, 53, 10095–10098.
[48] H. Mo, D. Raftery, J. Biomol. NMR 2008, 41, 105–111.
[49] R. T. Mckay, Concepts Magn. Reson. Part A 2011, 38A, 197–220.
[50] “Mustard gas” is often used in the presence of additives to make it
viscous or solid. In this case, methanol should be first introduced inside
the gear by an additional pump/tubing to solubilise the CWA.
[14] Y. Liu, A. J. Howarth, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed.
2015, 54, 9001–9005.
[15] G. W. Wagner, L. R. Procell, D. C. Sorrick, G. E. Lawson, C. M. Wells,
C. M. Reynolds, D. B. Ringelberg, K. L. Foley, G. J. Lumetta, D. L.
Blanchard, Ind. Eng. Chem. Res. 2010, 49, 3099–3105.
[16] A. J. Howarth, C. T. Buru, Y. Liu, A. M. Ploskonka, K. J. Hartlieb, M.
McEntee, J. J. Mahle, J. H. Buchanan, E. M. Durke, S. S. Al-Juaid, et al.,
Chem. – Eur. J. 2017, 23, 214–218.
[17] M. Grandcolas, A. Louvet, N. Keller, V. Keller, Angew. Chem. Int. Ed.
2009, 48, 161–164.
[18] K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem.
2013, 5, 905–915.
[19] S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilocchio, R. J. Ingham,
Angew. Chem. Int. Ed. 2015, 54, 10122–10136.
[20] J. Sedelmeier, S. V. Ley, I. R. Baxendale, M. Baumann, Org. Lett. 2010,
12, 3618–3621.
[21] F. Lévesque, P. H. Seeberger, Org. Lett. 2011, 13, 5008–5011.
[22] A. B. Leduc, T. F. Jamison, Org. Process Res. Dev. 2012, 16, 1082–
1089.
This article is protected by copyright. All rights reserved.