TABLE 1. Tautomeric Constants, KT, for 2-NCH in Different Solvents and Physical Properties of the Solvents
solvent
ꢀ
δ (cal1/2 cm-3/2)
F(ꢀ)
TN
KT
C6H12
2
8.2
0.200
0.03 ( 0.02
0.25 ( 0.02
0.67 ( 0.02
0.67 ( 0.02
0.67 ( 0.02
0.82 ( 0.02
0.77 ( 0.02
0.77 ( 0.02
0.75 ( 0.02
0.77 ( 0.02
6.51 ( 0.57
5.97 ( 0.47
CCl4
2.2
4.8
8.9
35.9
8.6
0.222
CHCl3
9.3
0.358
1.53 ( 0.06
CH2Cl2
9.7
0.420
0.64 ( 0.02
CH3CN
11.8
0.479
0.110 ( 0.006
0.091 ( 0.012
0.138 ( 0.007
0.120 ( 0.007
0.157 ( 0.017
0.156 ( 0.002
1
2
3
4
5
10.0 ( 1.5
22.5 ( 7.4
16.2 ( 3.8
25.7 ( 9.6
29.7 ( 13.3
13.1 ( 0.1
11.8 ( 0.1
12.2 ( 0.1
11.5 ( 0.1
11.5 ( 0.1
0.429 ( 0.010
0.467 ( 0.010
0.455 ( 0.010
0.471 ( 0.009
0.475 ( 0.009
where ∆G0x represents the standard free energy change
associated with the tautomeric equilibrium of 2-NCH in
solvent x, Di represents the i selected descriptors of
solvent polarity, and fi represents the corresponding
regression coefficients. The above correlation analysis has
been initially limited to the five pure organic solvents,
as the corresponding D values are available from the
literature. It turns out that the two best correlations (R2
> 0.999, Table 3 in Supporting Information) are those
obtained from the three-parameter equations that use
Kirkwood’s function F(ꢀ) ) (ꢀ - 1)/(2ꢀ + 1), the cohesive
pressure δ2, and ET or TN [eqs 2 and 3] as the descriptors
of the observed solvent effects.
∆G0x ) ∆G0gas + aδ 2 + bF(ꢀ) + cET
(2)
N
∆G0x ) ∆G0gas + aδ 2 + bF(ꢀ) + cTN )
∆G0gas + ∆G0
FIGURE 2. Comparison between the values of ∆Gx° calcu-
lated from eq 3 (∆Gx°calc) and the experimental values (∆Gx°exp).
(3)
solv
pressure values, δ, due to the absence of volatility, are
available. However, we note that a paper16 has recently
appeared on the estimates of internal energies of vapor-
ization of some RTILs determined on the basis of kinetic
measurements for the reaction of singlet oxygen with 1,4-
dimethylnaphthalene. Empirical polarity scales, devel-
oped using solvatochromic dyes, suggest that imidazoli-
um RTILs are more polar than acetonitrile and less polar
than or of comparable polarity to that of lower alcohols.14
However, polarity is the sum of all possible, nonspecific
It should be considered that these three parameters
express different and complementary properties of the
solvent, namely, the electrostatic shielding of partial or
full charges [F(ꢀ)], the cavitational energy (δ2), and
aspecific as well as lone pair donor-acceptor and hydro-
gen bonding interactions (ET or TN). We have then
extended the regression analysis to the above-mentioned
18 binary solvent mixtures (see Table 4 in Supporting
Information) in terms of eq 3, where TN represents
experimental values, F(ꢀ) has been calculated from
Kirkwood’s theory,10 and δ2 has been calculated from the
known values in the pure solvents taking into consider-
ation the appropriate volume fractions in the examined
binary mixtures.11 The obtained correlation is good
(12) (a) Holbrey, J. D.; Seddon, K. R. Clean Prod. Processes 1999,
1, 223. (b) Earle, M. J.; Seddon, M. K. R. Pure Appl. Chem. 2000, 72,
1391. (c) Welton, T. Chem. Rev. 1999, 99, 2071. (d) Wasserscheid, P.;
Keim M. Angew. Chem., Int. Ed. 2000, 39, 3772. (e) Sheldon, R. Chem.
Commun. 2001, 2399. (f) Olivier-Bourbigou, H.; Magna L. J. Mol.
Catal. A 2002, 182, 419. (g) Dupont, J.; de Souza, R. F.; Suarez, P. A.
Z. Chem. Rev. 2002, 102, 3667. (h) Wilkes J. S. J. Mol. Chem. A 2004,
214, 11. (i) Ionic Liquids in Synthesis Wasserscheid, P., Welton, T.,
Eds.; Wiley-VCH: Weinheim, 2003. (j) Welton T. Coord. Chem Rew.
2004, 248, 2459.
(13) (a) Bonhoˆte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyana-
sundaram, K.; Gra¨tzel, M. Inorg. Chem. 1996, 35, 1168. (b) Carda-
Broch, S.; Berthod, A.; Armstrong, D. W. Anal. Bioanal. Chem. 2003,
375, 191. (c) Giraud, G.; M. J.; Gordon, C. M.; Dunkin, I. R.; Wynne,
K. J. Chem. Phys. 2003, 119, 464.
(14) (a) Carmichael, A. J.; Seddon, K. R. J. Phys. Org. Chem. 2000,
13, 591. (b) Dzyuba, S. V.; Bartsch, R. A. Tetrahedron Lett. 2002, 43,
4657. (c) Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R. J. Chem. Soc.,
Perkin Trans. 2 2001, 433. (d) Aki, N. V. K.; Brennecke, J. F.; Samanta,
A. Chem. Commun. 2001, 413. (e) Fletcher, K. A.; Storey, I. A.;
Hendricks, A. E.; Pandey, S.; Pandey, S. Green Chem. 2001, 3, 210. (f)
Poole, C. F. J. Chromatogr., A 2004, 1037, 49.
(15) (a) Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W. J.
Am. Chem. Soc. 2002, 124, 14247. (b) Abraham, M. H.; Zissimos, A.
M.; Huddleston, J. G.; Willauer, H. D.; Rogers, R. D.; Acree, W. E. Ind.
Eng. Chem. Res. 2003, 42, 413. (c) Ropel, L.; Belve`ze, L. S.; Aki, S. N.
V. K.; Stadtherr, M. A.; Brennecke, J. F. Green Chem. 2005, 7, 83.
(16) Swiderski, K.; McLean, A.; Gordon, C. M.; Vaughan, D. H.
Chem. Commun. 2004, 2178.
(∆G0 ) -3.53 ( 0.12 kcal/mol, R2 ) 0.9815, n ) 23),
gas
and the average difference between the experimental
values of ∆G0 and those estimated from eq 3 is of only
x
0.075 kcal/mol (Figure 2).
Room-temperature ionic liquids (RTILs) are emerging
as convenient, reusable, environmentally benign, and
versatile solvents for a variety of organic reactions.12 An
attractive feature of RTILs is that their physical proper-
ties can be fine-tuned by structural variations within the
cationic or anionic components.13,14a-c Although several
efforts have been made to determine the polarity of RTILs
using solvatochromic dyes and partition methods,14,15
neither direct measurement of permittivities, ꢀ, which
would require a nonconducting medium, nor cohesive
(9) Katritzky, A. R.; Fara, D. C.; Yang, H.; Tamm, K.; Tamm, T.;
Karelson, M. Chem. Rev. 2004, 104, 175.
(10) Wang, P.; Anderko, A. Fluid Phase Equilib. 2001, 186, 103.
(11) Snyder, L. R. In Techniques of Chemistry; Perry, E. S., Weiss-
berger, A., Eds.; Plenum Press: New York, 1978; pp 25-75.
8194 J. Org. Chem., Vol. 70, No. 20, 2005