A R T I C L E S
Miyazaki et al.
by PT, and (4) simultaneous ET and PT in a concerted manner.
The reactions in (1) and (4) could be categorized as HAT. For
the PCET reactions, mechanistic insights can be provided
Chart 1. Schematic Description of Structures of 1 (R ) H) and 2
a
(
3
R ) CH ), and Atom Numbering Scheme
through the thermodynamic approach using the thermochemical
8
a
cycle involving redox potentials and pK values of a reagent
and the kinetic study on the reaction. For example, rate constants
II
of hydrogen atom abstraction reactions between Fe -tris-
(
biimidazoline) complexes and substrates are well analyzed in
9
-11
light of the Marcus cross relation.
PCET is the key step for functions of heteroaromatic coenzymes
involved in a variety of biological redox processes, as represented
2
,12
by NADH (dihydronicotinamide adenine dinucleotide),
1
3,14
15,16
flavins,
and pterins.
Those heteroaromatics including
nitrogen atom(s) as proton-accepting site(s) undergo dearoma-
tization in the course of reduction with protonation to recover
their aromaticity during the oxidation with deprotonation.
Among those, pterins can undergo multiple PCET from the fully
oxidized biopterins to fully reduced tetrahydropterins by ac-
a
3
The pterin ligands in 3 (R ) H) and 4 (R ) CH ) are deprotonated
from the N-1 position.
Scheme 1. Multistep Proton-Coupled Electron Transfer Process of
1
7
cepting and releasing up to four electrons and four protons.
Ruthenium Complexes with Redox-Noninnocent Pterin Ligand
(
HP ) Pterin)
Pterins locate in the vicinity of metal ions to conduct many
biologically important redox reactions including dioxygen
activation in collaboration with metal ions by manipulating
18
PCET. So far, metal complexes of pterins have gathered much
(
7) (a) Hatcher, E.; Soudackov, A. V.; Hammes-Schiffer, S. J. Am. Chem.
Soc. 2004, 126, 5763–5775. (b) Lehnert, N.; Solomon, E. I. J. Biol.
Inorg. Chem. 2003, 8, 294–305. (c) Goldsmith, C. R.; Stack, T. D. P.
Inorg. Chem. 2006, 45, 6048–6055. (d) Fukuzumi, S. HelV. Chim.
Acta 2006, 89, 2425–2439.
(
8) Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X. J. Am.
Chem. Soc. 1991, 113, 9790–9795.
(
9) Mader, E. A.; Larsen, A. S.; Mayer, J. M. J. Am. Chem. Soc. 2004,
1
26, 8066–8067.
(
(
10) Roth, J. P.; Yoder, J. C.; Won, T.-J.; Mayer, J. M. Science 2001, 294,
2
524–2526.
attention as functional and structural models and also as
11) (a) Waidmann, C. R.; Zhou, X.; Tsai, E. A.; Kaminsky, W.; Hrovat,
17a,19
complexes having redox-noninnocent ligands.
Among
D. A.; Borden, W. T.; Mayer, J. M. J. Am. Chem. Soc. 2009, 131,
those, ruthenium complexes of pterins have been reported to
exhibit PCET with clear reversibility for both the metal center
4
729–4743. (b) Wu, A.; Mayer, J. M. J. Am. Chem. Soc. 2008, 130,
1
4745–14754.
20
(
12) (a) Fukuzumi, S. In AdVances in Electron Transfer Chemistry; Mariano,
P. S., Ed.; JAI Press: Greenwich, CT, 1992; pp 67-175. (b) Fukuzumi,
S.; Tanaka, T. In Photoinduced Electron Transfer; Fox, M. A., Chanon,
M., Eds.; Elsevier: Amsterdam, 1988; Part C, Chapter 10, pp 578-
and the pterin ligands. We have reported on the synthesis and
characterization of the ruthenium-pterin complexes as shown
II
21
II
4 2
in Chart 1, [Ru (Hdmp)(TPA)](ClO ) (1), [Ru (Hdmdmp)-
22
2
1
II
-
6
35. (c) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am.
(TPA)](ClO
)
(2),
[Ru (dmp )(TPA)]ClO
(3),
and
4
2
4
Chem. Soc. 1987, 109, 305–316.
II
-
22,23
[
Ru (dmdmp )(TPA)]ClO (4),
4
in light of their structures
(
13) (a) De Colibus, L.; Mattevi, A. Curr. Opin. Struct. Biol. 2006, 16,
and redox properties including PCET. No report has appeared,
however, to demonstrate any reactivity of transition-metal
complexes of pterins toward external entities, including PCET
reactions with substrates.
7
22–728. (b) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.;
Watson, J. D. Molecular Biology of the Cell, 3rd ed.; Garland
Publishing: New York, 1994; pp 659-662.
(
14) (a) Tollin, G. In Electron Transfer in Chemistry; Balzani, V., Ed.;
Wiley-VCH: Weinheim, 2001; Vol. 5, pp 202-231. (b) Fukuzumi,
S.; Tanaka, T. In Photoinduced Electron Transfer; Fox, M. A., Chanon,
M., Eds.; Elsevier: Amsterdam, 1988; Part C, pp 636-687.
We report herein the thermochemical study of the PCET
system of those Ru-pterin complexes, as presented in Scheme
(
15) (a) Bobst, A. M. Nature 1968, 220, 164–165. (b) Mastropaolo, D.;
Camerman, A.; Camerman, N. Science 1980, 210, 334–336.
16) (a) Fukuzumi, S.; Tanii, K.; Tanaka, T. J. Chem. Soc., Chem. Commun.
1
a
, on the basis of the determination of pK values and redox
(
potentials in acetonitrile. We also report the detailed kinetic
analysis including the kinetic isotope effects on HAT reactions
from phenol derivatives to Ru(III)-pterin complexes, which
reveals the formation of a hydrogen-bonded adduct prior to the
HAT reactions. Thus, the present study provides valuable
1
1
989, 816–818. (b) Fukuzumi, S.; Tanii, K.; Tanaka, T. Chem. Lett.
989, 35–38.
(
17) (a) Burgmayer, S. J. N. Struct. Bonding (Berlin) 1998, 92, 67–119.
(
b) Benkovic, S. J.; Sammons, D.; Armarego, W. L. F.; Waring, P.;
Inners, R. J. Am. Chem. Soc. 1985, 107, 3706–3712. (c) Raghavan,
R.; Dryhurst, G. J. Electroanal. Chem. 1981, 129, 189–212. (d) Bobst,
A. HelV. Chim. Acta 1967, 50, 2222–2225.
(
18) (a) Hille, R. Chem. ReV. 1996, 96, 2757–2816. (b) Anderson, O. A.;
Flatmark, T.; Hough, E. J. Mol. Biol. 2002, 320, 1095–1108. (c)
Anderson, O. A.; Flatmark, T.; Hough, E. J. Mol. Biol. 2001, 314,
(19) Kaim, W.; Schwederski, B.; Heilmann, O.; Hornung, F. M. Coord.
Chem. ReV. 1999, 182, 323–342.
(20) Abelleira, A.; Galang, R. D.; Clarke, M. J. Inorg. Chem. 1990, 29,
633–639.
2
79–291. (d) Erlandsen, H.; Bjørgo, E.; Flatmark, T.; Stevens, R. C.
Biochemistry 2000, 39, 2208–2217. (e) Kappock, T. J.; Caradonna,
J. P. Chem. ReV. 1996, 96, 2659–2756. (f) Raman, C. S.; Li, H.;
Mart a´ sek, P.; Kr a´ l, V.; Masters, B. S. S.; Poulos, T. L. Cell 1998, 95,
(21) Miyazaki, S.; Ohkubo, K.; Kojima, T.; Fukuzumi, S. Angew. Chem.,
Int. Ed. 2008, 47, 9669–9672.
(22) (a) Miyazaki, S.; Kojima, T.; Sakamoto, T.; Matsumoto, T.; Ohkubo,
K.; Fukuzumi, S. Inorg. Chem. 2008, 47, 333–343. (b) Fukuzumi, S.;
Kojima, T. J. Biol. Inorg. Chem. 2008, 13, 321–333.
(23) Kojima, T.; Sakamoto, T.; Matsuda, Y.; Ohkubo, K.; Fukuzumi, S.
Angew. Chem., Int. Ed. 2003, 42, 4951–4954.
9
39–950. (g) Crane, B. R.; Arval, A. S.; Ghosh, D. K.; Wu, C.; Getzoff,
E. D.; Stuehr, D. J.; Tainer, J. A. Science 1998, 279, 2121–2126. (h)
Aoyagi, M.; Arval, A. S.; Ghosh, D. K.; Stuehr, D. J.; Tainer, J. A.;
Getzoff, E. D. Biochemistry 2001, 40, 12826–12832.
1
1616 J. AM. CHEM. SOC. 9 VOL. 131, NO. 32, 2009