Soft Matter
Paper
6 J. Yuan, X. Fang, L. Zhang, G. Hong, Y. Lin, Q. Zheng, Y. Xu,
Y. Ruan, W. Weng, H. Xia and G. Chen, J. Mater. Chem.,
2012, 22, 11515–11522.
7 C. H. Li and J. L. Zuo, Adv. Mater., 2020, 32, 1903762.
8 J. Kim and D. Lee, Chem. Sci., 2019, 10, 3864–3872.
9 W. Fang, Y. Zhang, J. Wu, C. Liu, H. Zhu and T. Tu,
Chem. – Asian J., 2018, 13, 712–729.
amount of precipitate increased much faster under light expo-
sure than in dark storage. After 80 h of irradiation, most of the
coordination polymers precipitated, while the colloidal disper-
sion without light exposure remained relatively stable with a
very small amount of precipitation.
4 Conclusion
10 C. D. Jones and J. W. Steed, Chem. Soc. Rev., 2016, 45,
6546–6596.
In summary, the coordination polymers bearing azo groups on
the main chain were obtained through Ag(I)–pyridine coordina-
tion. As a supergelator, the coordination polymer trans-AgD
could form a stable organogel constituted by the network of
nanofibers, where both coordination and p–p stacking inter-
action played important roles in self-assembly. The self-healing
behavior of the gel was characterized, and the gel–sol transition
of the organogel in response to multiple external triggers
including temperature, mechanical shearing, light, and chemicals
was systematically investigated. Compared with the ligand, the
photoisomerization of the azo groups in the coordination poly-
mers was remarkably hindered due to the macromolecular steric
hindrance. Besides, different from the one-dimensional packing
of trans-AgD, in the self-assembly of the cis coordination polymer,
cis-AgD isotropically assembled into colloid nanoparticles. Upon
visible light irradiation or heating, the nano assembly of cis-AgD
transformed from particles to fibrous aggregates due to the cis-to-
trans isomerization, causing precipitation and demulsification.
This work provides a new strategy to design a multi-responsive
organogel and colloid with potential applications in responsive
materials.
11 K. C. Bentz and S. M. Cohen, Angew. Chem., Int. Ed., 2018,
57, 14992–15001.
¨
´
12 M. Haring and D. D. Dıaz, Chem. Commun., 2016, 52,
13068–13081.
13 J. Y. Zhang and C. Y. Su, Coord. Chem. Rev., 2013, 257,
1373–1408.
14 H. Q. Wu, J. Zheng, A. L. Kjøniksen, W. Wang, Y. Zhang and
J. M. Ma, Adv. Mater., 2019, 31, 1806204.
15 P. Sutar and T. K. Maji, Chem. Commun., 2016, 52,
8055–8074.
16 X. Yu, Z. Wang, Y. Li, L. Geng, J. Ren and G. Feng,
Inorg. Chem., 2017, 56, 7512–7518.
17 S. C. Wei, M. Pan, K. Li, S. Wang, J. Zhang and C. Y. Su,
Adv. Mater., 2014, 26, 2072–2077.
18 V. K. Pandey, M. K. Dixit, S. Manneville, C. Bucher and
M. Dubey, J. Mater. Chem. A, 2017, 5, 6211–6218.
19 S. Bera, A. Chakraborty, S. Karak, A. Halder, S. Chatterjee,
S. Saha and R. Banerjee, Chem. Mater., 2018, 30, 4755–4761.
20 E. Saha and J. Mitra, ACS Appl. Mater. Interfaces, 2019, 11,
10718–10728.
´
´
21 E. Borre, J. F. Stumbe, S. Bellemin-Laponnaz and M. Mauro,
Angew. Chem., Int. Ed., 2016, 55, 1313–1317.
´
22 E. Borre, S. Bellemin-Laponnaz and M. Mauro, Chem. – Eur.
Conflicts of interest
J., 2016, 22, 18718–18721.
23 C. Shi, X. Guo, Q. Qu, Z. Tang, Y. Wang and S. Zhou,
Biomaterials, 2014, 35, 8711–8722.
There are no conflicts of interest to declare.
24 S. Zhai, X. Hu, Y. Hu, B. Wu and D. Xing, Biomaterials, 2017,
121, 41–54.
25 Y. Dong, X. Ma, H. Huo, Q. Zhang, F. Qu and F. Chen,
J. Appl. Polym. Sci., 2018, 135, 46675.
26 Y. Nishida, A. Tanaka, S. Yamamoto, Y. Tominaga,
N. Kunikata, M. Mizuhata and T. Maruyama, Angew. Chem.,
Int. Ed., 2017, 56, 9410–9414.
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (Grant No. 51903250 and 21574074) and
the Science Foundation of China University of Petroleum,
Beijing (Grant No. 2462020YXZZ019).
27 Y. Zhang, G. Zhu, B. Dong, J. Tang, J. Li, G. Yang, S. Hong
and F. Xing, ACS Appl. Mater. Interfaces, 2019, 11,
43741–43750.
References
28 J. E. Sayed, C. Lorthioir, P. Banet, P. Perrin and N. Sanson,
Angew. Chem., Int. Ed., 2020, 59, 7042–7048.
29 A. Abdollahi, K. Sahandi-Zangabad and H. Roghani-
Mamaqani, Langmuir, 2018, 34, 13910–13923.
1 Y. B. Zhang, Z. H. Wang, Y. Yang, Q. M. Chen, X. J. Qian,
Y. H. Wu, H. Liang, Y. S. Xu, Y. Wei and Y. Ji, Sci. Adv., 2020,
6, eaay8606.
2 K. Uto, J. H. Tsui, C. A. DeForest and D. H. Kim, Prog. Polym.
Sci., 2017, 65, 53–82.
˜
30 F. Jasinski, T. R. Guimaraes, S. David, C. Suniary,
T. Funston, Y. Takahashi, Y. Kondo and P. B. Zetterlund,
Macromol. Rapid Commun., 2019, 40, 1900355.
31 D. Lu, M. Zhu, S. Wu, W. Wang, Q. Lian and B. R. Saunders,
Polym. Chem., 2019, 10, 2516–2526.
32 X. Wen, L. M. Tang and B. T. Li, Chem. – Asian J., 2014, 9,
2975–2983.
3 F. Li, J. Lu, X. Kong, T. Hyeon and D. Ling, Adv. Mater., 2017,
29, 1605897.
4 W. Wang, X. Fan, F. Li, J. Qiu, M. M. Umair, W. Ren, B. Ju,
S. Zhang and B. Tang, Adv. Opt. Mater., 2018, 6, 1701093.
5 L. J. Chen and H. B. Yang, Acc. Chem. Res., 2018, 51,
2699–2710.
This journal is © The Royal Society of Chemistry 2021
3662 | Soft Matter, 2021, 17, 3654–3663