nitrocycloalkene 18 was recovered intact. We presume that the
formation of 10 from 5 follows a similar route.
Additional evidence for this mechanistic scheme is the fact
that no 1,2-nitro acetate, 1,2-nitro nitrate or transannular
products are produced from any of the cyclic vinylsilanes 1–5,
unlike the reported results of the nitration of cycloalkenes under
similar conditions.1
The formation of the keto nitrate 11 is likely to be due to a
Nef-type transformation12 of a possible intermediate 17, which
can also give the dinitro nitrate.
Our work demonstrates that nitration of cyclic vinylsilanes
can be accomplished, though the nature of the products is
dependent on the ring size, in that the common rings give the
Wierschke, J. Chandrasekhar and W. L. Jorgensen, J. Am. Chem. Soc.,
985, 107, 1496; J. S. Panek, Comprehensive Organic Synthesis, ed.
B. M. Trost, Pergamon, London, 1991, vol. 1, part 1, p. 579; I. Fleming,
A. Barbero and D. Walter, Chem. Rev., 1997, 97, 2063.
An unsuccessful attempt to nitrate cyclic vinylsilanes has been
previously reported, but without revealing the details: E. J. Corey and H.
Estreicher, Tetrahedron Lett., 1980, 21, 1113.
See for example, M. Ayerbe, A. Arrieta and F. P. Cossio, J. Org. Chem.,
1998, 63, 1795; S. E. Denmark and J. A. Dixon, J. Org. Chem.,1997, 62,
7086; E. Dumez, J. Rodriguez and J.-P. Dulcere, Chem. Commun.,
1997, 1831; S. E. Denmark and A. Thorarensen, Chem. Rev.,1996, 96,
1
5
6
1
37.
AcONO
AR Grade, Merck) to Ac
G. Nagendrappa, Synthesis, 1980, 704.
Selected data for 9: mp 56–58 °C; nmax/cm2 1652, 1595, 1564;
(CDCl ) 6.19 (dd, J 7.6 and 1.4, 1H), 2.94–2.63 (m, 2H), 2.45–2.30
m, 1H), 2.12–1.99 (m, 1H), 1.89–1.77 (m, 4H), 1.59–1.44 (m, 4H);
7
2
was prepared by adding 0.375 g of conc. HNO
3
(1.40 density,
2
O (5 ml, distilled over P ); see ref. 1.
2 5
O
8
9
1
-nitrocycloalkenes and rings larger than seven-membered
1
rings will produce novel dinitro nitrates.
d
H
3
The authors thank the DST and the CSIR, New Delhi, for
financial support of this work and a fellowship to GSP. Some of
the equipment used in this work was donated by the Alexander
von Humboldt Foundation, Germany.
(
d (CDCl ) 121.5 (s), 78.7 (d), 32.3 (t), 30.6 (t), 25.9 (t), 25.8 (t), 24.8 (t),
C
3
+
21.8 (t); d
O
(CDCl
3
) 596.3, 445.2, 352.9; m/z 264 (1%, M + 1), 171 (3),
+
95 (37), 81 (34), 67 (37), 55 (72), 46 (100, NO
2
), 41 (67) (Found: C,
3
1
d
1
6.73; H, 5.03; N, 16.01. C
5.96%). For 10: mp 80–82 °C; nmax/cm
(CDCl ) 6.08 (d, J 9.9, 1H), 2.58–2.39 (m, 2H), 2.03–1.83 (m, 1H),
.60–1.28 (m, 17H); d (CDCl ) 120.4, 74.9, 32.5, 26.6, 25.6, 25.0, 22.3,
22.1, 22.0, 21.8, 21.6, 19.6 (Found: C, 45.11; H, 6.81; N, 12.83.
requires: C, 45.14; H, 6.63; N, 13.16%). For 11: mp.
8 13 3 7
H N O requires: C, 36.51; H, 4.98; N,
2
1
1667, 1595, 1569;
H
3
Notes and references
C
3
1
2
3
A. A. Borisenko, A. V. Nikulin, S. Wolfe, N. S. Zefirov and N. V. Zyk,
J. Am. Chem. Soc., 1984, 106, 1074 and references cited therein.
G. A. Olah, R. Malhotra and S. C. Narang, Nitration:Methods and
Mechanisms, VCH, New York, 1989.
For some of the procedures for the preparation of 1-nitroalkenes, see
J. R. Hwu, K.-L. Chen and S. Ananthan, J. Chem. Soc., Chem.
Commun., 1994, 1425; S. E. Denmark and L. R. Marcin, J. Org. Chem.,
12 21 3 7
C H N O
2
1
89–91 °C; nmax/cm 1729, 1652, 1636; d
2.81–2.71 (m, 1H), 2.50–2.40 (m, 1H), 2.14–1.85 (m, 3H), 1.64–0.88
(CDCl ) 204.3, 85.5, 34.8, 26.2, 26.1, 25.9, 23.7, 22.6,
H 3
(CDCl ) 5.29 (q, J 3.3, 1H),
(m, 15H); d
C
3
22.2, 21.8, 21.0, 19.2 (Found: C, 59.05; H, 8.85; N, 5.38.C12
requires: C, 59.24; H, 8.70; N, 5.76%).
H21NO
4
1
993, 58, 3850; A. Kamimura, T. Kawai and A. Kaji, J. Chem. Soc.,
10 E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds,
Wiley, New York, 1994, ch. 11, pp. 762–771.
11 W. K. Seifert, Org. Synth., 1988, Coll. Vol. 6, 837.
12 J. R. Hwu and B. A. Gilbert, J. Am. Chem. Soc., 1991, 113, 5917 and
references cited therein.
Chem. Commun., 1987, 1550; E. J. Corey and H. Estreicher, J. Am.
Chem. Soc., 1978, 100, 6294; R. Ballini and C. Palestini, Tetrahedron
Lett., 1994, 35, 5731; R. S. Varma, R. Dahiya and S. Kumar,
Tetrahedron Lett., 1997, 38, 5131.
4
B. Chiavarino, M. E. Crostoni and S. Fornarini, J. Am. Chem. Soc.,
1998, 120, 1523; J. B. Lambert, Tetrahedron, 1990, 46, 2677; S. G.
Communication 9/02388G
1080
Chem. Commun., 1999, 1079–1080