J. T. Bork et al. / Tetrahedron Letters 44 (2003) 6141–6144
6143
with benzylsulfanyl as adjacent substituent (upon cleav-
age yields product 5b), (2) oxidation, (3) amine replace-
ment of sulfone and (4) cleavage, yielding product 5c.
Furuya, S.; Fujino, M. J. Med. Chem. 2003, 46, 113–
124; (c) Hotzel, A.; Schmid, D. G.; Nicholson, G. J.;
Graeme, J.; Stevanovic, S.; Schimana, J.; Gebhardt, K.;
Fiedler, H. S.; Jung, G. J. Antibio. 2002, 55, 571–577.
3. (a) Ikegaya, K.; Ozaki, M.; Kawashima, T.; Miura, I.;
Muramatsu, N. Preparation of biarylalkylenecarbamic
acid derivatives as agricultural and horticultural fungi-
cides. PCT Int. Appl., WO9910317; 1999; (b)
Hatanaka, Y.; Hagiwara, E.; Gouda, K.; Hiyama, T.
Process of producing unsaturated organic compounds
such as biaryls or arylpyridine derivative by coupling of
organohalosilane with halobenzenes or halopyridines.
PCT Int. Appl. WO9628401; 1996.
The purity data in Table 2 correlates to the three final
cleaved products of Scheme 1 and Scheme 2, 5a, 5b,
and 5c, with either 4-methoxybenzylamine or benzene-
methanethiol, as the X2 substituent. The R1 resin-
bound amine for all the reactions was 4-methoxybenzyl-
amine. The synthesis of 5c products required oxidation
with m-CPBA of the benzylsulfide, followed by replace-
ment of benzylsulfone with 4-methoxybenzylamine.
This served as a useful comparison for both pathways,
since 5a products and 5c products are identical com-
pounds.
4
. (a) Bringmann, G.; Stowasser, R.; Goebel, L. J.
Organomet. Chem. 1997, 544, 7–13; (b) Lee, D. H.; Im,
J. H.; Lee, J. H.; Hong, J. I. Tetrahedron Lett. 2002,
4
3, 9637–9640; (c) Messner, M.; Kozhushkov, S.; De
Generally, the 5b compounds demonstrated higher
purity than the 5a compounds. As a result, the final 5c
product exhibited high purity, as well, as it followed the
pathway of Scheme 2 with sulfide intermediate 4b.
Thus, the sulfone chemistry not only offers greater
accessibility for diversification, as the chemistry accom-
modates another site for nucleophilic amination, it also
allows for greater compound purity. As a further note,
the results illustrate the broad tolerance of the reaction
for arylboronic acids. Our final conditions allowed for
a wide variance of boronic acids with neutral, electron-
Meijere, A. Eur. J. Org. Chem. 2000, 1137–1155.
. (a) Larock, R. C. Comprehensive Organic Transforma-
tions, 2nd ed; Wiley-VCH: New York, 1999; pp. 362–
5
3
2
64; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
457–2483; (c) Hassan, J.; S e´ vignon, M.; Gozzi, C.;
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–
469.
. (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
002, 41, 4176–4211; (b) Littke, A. F.; Fu, G. C.
1
6
2
Angew. Chem., Int. Ed. 1998, 37, 3387–3388; (c) Littke,
A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,
4
Soc. 2000, 122, 12051–12052; (e) Yin, J.; Rainka, M.
P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc.
withdrawing,
as
well
as
electron-donating
020–4028; (d) Yin, J.; Buchwald, S. L. J. Am. Chem.
functionalities.
In summary, we have developed two novel synthetic
strategies toward making 1,3,5-trisubstituted aryl-triazi-
nes that can be applied to combinatorial triazine
libraries. The previous orthogonal approach and the
sulfone chemistry, in combination with the Suzuki reac-
tion, will enable the generation of highly diversified and
pure aryl-triazines. We are now in the process of con-
structing an extensive aryl-triazine library with biologi-
cal screenings to follow.
2
002, 124, 1162–1163.
. Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66,
125–7128.
7
8
9
7
. Cooke, G.; de Cremiers, A.; Rotello, V. M.; Tarbit, B.;
Vanderstraeten, P. E. Tetrahedron 2001, 57, 2787–2789.
. (a) Ishikura, M.; Kamada, M.; Terashima, M. Synthesis
1
984, 936–938; (b) Mitchell, M. B.; Wallbank, P. J.
Tetrahedron Lett. 1991, 32, 2273–2276; (c) Ali, N. M.;
McKillop, A.; Mitchell, M. B.; Rebelo, R. A.; Wall-
bank, P. J. Tetrahedron 1992, 48, 8117–8126; (d)
Zhang, H.; Chan, K. S. Tetrahedron Lett. 1996, 37,
Acknowledgements
1
043–1044; (e) Zhang, H.; Kwong, F. Y.; Tian, Y.;
Chan, K. S. J. Org. Chem. 1998, 63, 6886–6890.
1
0. (a) Havelkov a´ , M.; Hocek, M.; Cesnek, M.; Dvor a´ k,
D. Synlett 1999, 1145–1147; (b) Ding, S.; Gray, N. S.;
Ding, Q.; Schultz, P. G. Tetrahedron Lett. 2001, 42,
Funding support from Luminogene (www.luminogene.
com) is acknowledged.
8751–8755; (c) Havelkov a´ , M.; Dvor a´ k, D.; Hocek, M.
Synthesis 2001, 11, 1704–1710.
References
1
1. (a) Janietz, D.; Bauer, M. Synthesis 1993, 1, 33–34; (b)
Cocuzza, A. J.; Chidester, D. R.; Culp, S.; Fitzgerald,
P.; Gilligan, P. Bioorg. Med. Chem. Lett. 1999, 9,
1
. (a) Bringmann, G.; Pokorny, F. In The Alkaloids;
Cordell, G. A., Ed.; Academic Press: New York, 1995;
Vol. 46, p. 127; (b) Furukawa, H.; Wu, T. S.; Ohta, T.
Chem. Pharm. Bull. 1983, 31, 4202–4205; (c) Bring-
mann, G.; G u¨ nther, C.; Ochse, M.; Schupp, O.; Tasler,
S. Prog. Chem. Org. Nat. Prod. 2001, 82, 1–293.
1
063–1066.
2. Wade, J.; Krueger, C. A. J. Comb. Chem. 2003, 5,
67–272.
1
2
13. Ding, S.; Gray, N. S.; Wu, X.; Ding, Q.; Schultz, P. G.
J. Am. Chem. Soc. 2002, 124, 1594–1596.
2
. (a) Gallant, M.; Carri e´ re, M. C.; Chateauneuf, A.;
Denis, D.; Gareau, Y.; Godbout, C.; Greig, G.; Juteau,
H.; Lachance, N.; Lacombe, P.; Lamontagne, S.; Met-
ters, K. M.; Rochette, C.; Ruel, R.; Slipetz, D.;
Sawyer, N.; Tremblay, N.; Labelle, M. Biorg. Med.
Chem. Lett. 2002, 12, 2583–2586; (b) Sasaki, S.; Cho,
N.; Nara, Y.; Harada, M.; Endo, S.; Suzuki, N.;
14. Brun, V.; Legraverend, M.; Grierson, D. S. Tetrahedron
2002, 58, 7911–7923.
15. Moon, H. S.; Jacobson, E.; Khersonsky, S. M.;
Luzung, M.; Walsh, D.; Xiong, W.; Lee, J. W.; Parikh,
P.; Lam, J. C.; Kang, T. W.; Rosania, G. F.; Schier,
A.; Chang, Y. T. J. Am. Chem. Soc. 2002, 124, 11608–
11609.