Dongming Lu et al.
COMMUNICATIONS
[
15]
coupling reactions. The reason for the higher reac- du University of Technology (No. HY0084) for financial sup-
port.
tivity of unactivated 2-chlorobenzyl halides is proba-
bly due to the intramolecular coupling reaction.
The reactivity of 2-fluorobenzyl chloride was too
low to carry out this domino reaction (entry 10). Two
strong electron-donating groups apparently decreased
References
the yield (entry 4), but one methoxy group only mar-
[
1] K. T. Olkkola, J. Ahonen, in: Handbook of experimen-
tal pharmacology, Vol. 182, (Eds.: J. Schüttler, H.
Schwilden), Springer-Verlag, Berlin, Heidelberg, 2008,
pp 335–360.
ginally influenced the reaction (entry 3). Finally, the
low yield of 2-(bromomethyl)-1,4-dichlorobenzene
may be caused by the CÀN coupling side reaction
(
entry 9).
[2] M. H. Bolli, J. Marfurt, C. Grisostomi, C. Boss, C. Bin-
kert, P. Hess, A. Treiber, E. Thorin, K. Morrison, S.
Buchmann, D. Bur, H. Ramuz, M. Clozel, W. Fischli, T.
Weller, J. Med. Chem. 2004, 47, 2776–2795.
In conclusion, a new synthetic method for the Cu-
catalyzed domino S 2/coupling reaction has been de-
N
veloped for the synthesis of chiral 3-substituted
[
3] H. J. Breslin, M. J. Kukla, T. Kromis, H. Cullis, F. De
Knaep, R. Pauwels, K. Andries, E. De Clercq, M. A. C.
Janssen, P. A. J. Janssen, Bioorg. Med. Chem. 1999, 7,
[
1,4]benzodiazepin-2-ones. In the presence of CuI and
K CO , amino acid amides and ortho-halobenzyl hal-
2
3
ides were facilely transformed into chiral 3-substitut-
ed [1,4]benzodiazepin-2-ones. Moreover the chirality
of the chiral amino acid amides was well preserved
during the reaction. This synthetic method has some
advantages, such as one-pot process, a wide range of
substrates, easy operation and cheap copper catalyst.
Furthermore, no heavy racemization was observed via
chiral HPLC analysis.
2
427–2436.
[
4] J. K. Mishra, P. Garg, P. Dohare, A. Kumar, M. I. Siddi-
qi, M. Ray, G. Panda, Bioorg. Med. Chem. Lett. 2007,
17, 1326–1331.
[5] a) J. Y. Lee, I. Im, T. R. Webb, D. McGrath, M.-R.
Song, Y.-C. Kim, Bioorg. Chem. 2009, 37, 90–95; b) I.
Im, T. R. Webb, Y.-D. Gong, J.-I. Kim, Y.-C. Kim, J.
Comb. Chem. 2004, 6, 207–213.
[
6] Takeda Chemical Industries, Ltd., European Patent
EP1591120A1, 2005.
[
7] O. Kinzel, C. Gege, C. Steeneck, G. Kleymann, T. Hoff-
mann, (Phenex Pharmaceuticals AG), WO Patent
WO2013/64231A1, 2013.
Experimental Section
General Procedure for Synthesis of Chiral 3-
Substituted 1,3,4,5-Tetrahydro-2H-1,4-benzodiazepin-
[8] J. K. Mishra, G. Panda, Synthesis 2005, 1881–1887.
[9] R. A. Sheldon, Chem. Commun. 2008, 3352–3365.
[10] a) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazan,
Chem. Rev. 2005, 105, 1001–1020; b) A. Behr, A. J.
Vorholt, K. A. Ostrowski, T. Seidensticker, Green
Chem. 2014, 16, 982–1006.
2-ones
To an oven-dry test tube with a ground joint neck with
a magnetic stir bar were added a-amino acid amide
(
(
0.75 mmol), 2-halobenzylic halide (0.5 mmol), CuI
0.05 mmol), K CO (1 mmol) and DMF (5 mL). The test
[
11] For reviews, see: a) Y. Liu, J. P. Wan, Org. Biomol.
Chem. 2011, 9, 6873–6894; b) Q. Liao, X. Yang, C. Xi,
J. Org. Chem. 2014, 79, 8507–8515. For examples, see:
c) A. Klapars, S. Parris, K. W. Anderson, S. L. Buch-
wald, J. Am. Chem. Soc. 2004, 126, 3529–3533; d) X.
Lu, L. Shi, H. Zhang, Y. Jiang, D. Ma, Tetrahedron
2
3
tube was sealed with a rubber sleeve stopper, and then evac-
uated and refilled with argon for three cycles. The tube was
placed an oil bath preheated at 1108C for 24 h. After being
cooled to room temperature, the reaction mixture was
quenched with water and subsequently extracted with ethyl
acetate (15 mL) for three times. The extract organic layer
2
010, 66, 5714–5718.
[
[
12] a) C. Dai, X. Sun, X. Tu, L. Wu, D. Zhan, Q. Zeng,
Chem. Commun. 2012, 48, 5367–5369; b) X. Sun, X. Tu,
C. Dai, X. Zhang, B. Zhang, Q. Zeng, J. Org. Chem.
was dried over anhydrous MgSO , filtered and concentrated
4
under vacuum on a rotary evaporator. The resulting residual
was purified by silica gel flash column chromatography with
the mixed solution of petroleum ether and ethyl acetate (5:1
to 1:1 (v/v)) to give the desired 3-substituted 1,3,4,5-tetrahy-
drobenzo[e][1,4]diazepin-2-one.
2
012, 77, 4454–4459; c) J. Dong, Y. Wang, Q. Xiang, X.
Lv, W. Weng, Q. Zeng, Adv. Synth. Catal. 2013, 355,
92–696.
13] a) H. Wei, T. Li, Y. Zhou, L. Zhou, Q. Zeng, Synthesis
013, 45, 3349–3354; b) Q. Zeng, H. Wang, T. Wang, Y.
Cai, W. Weng, Y. Zhao, Adv. Synth. Catal. 2005, 347,
933–1936.
[14] K. Yasukawa, Y. Asano, Adv. Synth. Catal. 2012, 354,
327–3332.
6
2
1
Acknowledgements
3
We thank the National Natural Science Foundation of China
[15] a) K. Kunz, U. Scholz, D. Ganzer, Synlett 2003, 2428–
2439; b) F. Monnier, M. Taillefer, Angew. Chem. 2009,
121, 7088–7105; Angew. Chem. Int. Ed. 2009, 48, 6954–
6971.
(No. 21372034), the Ministry of Scienve and Technology of
the People’s Republic of China (No. 2013DFA1690), and the
cultivating program for excellent innovation team of Cheng-
3
494
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 3491 – 3494