Inorganic Chemistry
Communication
Expression and characterization of windmill palm tree (Trachycarpus
fortune) peroxidase by Pichia pastoris. J. Agric. Food Chem. 2017, 65,
4676−4682. (c) Costa, D.; Passos, M. L. C.; Azevedo, A. M. O.;
Saraiva, M. L. M. F. S. Automatic evaluation of peroxidase activity
using diferente substrates under a micro sequential injection analysis/
lab-on-valve (μSIA-LOV) format. Microchem. J. 2017, 134, 98−103.
(5) (a) Lee, Y.; Yoo, S.; Kang, S.; Hong, S.; Han, M. S. An [Mn-
2(bpmp)](3+) complex as an artificial peroxidase and its applications
in colorimetric pyrophosphate and cascade-type pyrophosphatase
assay. Analyst 2018, 143 (8), 1780−1785. (b) Mumtaz, S.; Wang, L.-
S.; Hussain, S.-Z.; Abdullah, M.; Huma, Z.; Iqbal, Z.; Creran, B.;
Rotello, V. M.; Hussain, I. Dopamine coated Fe3O4 nanoparticles as
enzyme mimics for the sensitive detection of bacteria. Chem. Commun.
2017, 53, 12306−12308. (c) Zhao, J.; Wu, Y.; Tao, H.; Chen, H.;
Yang, W.; Qiu, S. Colorimetic detection of streptomycin in milk based
on peroxidase-mimicking catalytic activity of gold nanoparticles. RSC
Adv. 2017, 7, 38471−38478. (d) Carvalho, R. R.; Pujari, S. P.;
Gahtory, D.; Vrouwe, E. X.; Albada, B.; Zuilhof, H. Mild
photochemical biofunctionalization of glasse microchannels. Langmuir
2017, 33, 8624−8631. (e) Yang, W.; Wu, Y.; Tao, H.; Zhao, J.; Chen,
H.; Qiu, S. Ultrasensitive and selective colorimetric detection of
acetamiprid pesticide on the enhanced peroxidase-like activity of gold
nanoparticles. Anal. Methods 2017, 9, 5484−5493. (f) Kang, S.; Oh, J.;
Han, M. S. A colorimetric sensor for hydrogen sulfide detection using
direct inhibition of active site in G-quadruplex DNAzyme. Dyes Pigm.
2017, 139, 187−192.
(6) (a) Doctrow, S. R.; Huffman, K.; Marcus, C. B.; Tocco, G.;
Malfroy, E.; Adinolfi, C. A.; Kruk, H.; Baker, K.; Lazarowych, N.;
Mascarenhas, J.; Malfroy, B. Salen-manganese complexes as catalytic
scavengers of hydrogen peroxide and cytoprotective agents: structure-
activity relationship studies. J. Med. Chem. 2002, 45, 4549−4558.
(b) Armogida, M.; Nistisco, R.; Mercuri, N. B. Therapeutic potential
of targeting hydrogen peroxide metabolismo in the treatment of brain
ischaemia. Br. J. Pharmacol. 2012, 166, 1211−1224. (c) Ophoven, S.
J.; Bauer, G. Salen-manganese complexes: sophisticated tools for the
analysis of intercellular ROS signaling pathways. Anticancer Res. 2010,
30, 3967−3979.
conjugates of superoxide dismutase/catalase mimetics with cyclo-
́
destrins. J. Inorg. Biochem. 2009, 103, 381−388. (h) Andre, R.;
́
̈
Natalio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schroder,
H.-C.; Muller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic
̈
peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501−509.
(i) Noritake, Y.; Umezawa, N.; Kato, N.; Higuchi, T. Manganese
salen complexes with acid-base catalytic auxiliary: functional mimetics
of catalase. Inorg. Chem. 2013, 52, 3653−3662.
́
́
(9) (a) Gonzalez-Riopedre, G.; Bermejo, M. R.; Fernandez-García,
́
́
M. I.; Gonzalez-Noya, A. M.; Pedrido, R.; Rodríguez-Douton, M. J.;
Maneiro, M. Alkali-metal-ion-directed self-assembly of redox-active
manganese(III) supramolecular boxes. Inorg. Chem. 2015, 54, 2512−
́
́
́
2521. (b) Vazquez-Fernandez, A.; Bermejo, M. R.; Fernandez-García,
́
́
M. I.; Gonzalez-Riopedre, G.; Rodríguez-Douton, M. J.; Maneiro, M.
Influence of the geometry around the manganese ion on the
peroxidase and catalase activities of Mn(III)-Schiff base complexes.
J. Inorg. Biochem. 2011, 105, 1538−1547. (c) Bermejo, M. R.;
Fernandez, M. I.; Gonzalez-Noya, A. M.; Maneiro, M.; Pedrido, R.;
Rodríguez, M. J.; García-Monteagudo, J. C.; Donnadieu, B. Novel
peroxidase mimics: μ-aqua manganese-Schiff base dimers. J. Inorg.
Biochem. 2006, 100, 1470−1478.
́
́
(10) (a) Wolfenden, B. S.; Wilson, R. L. Radical-cations as reference
chromogens in kinetic-studies of one-electron transfer reactions −
pulse-radiolysis studies of 2,2’-azinobis-(3-ethylbenzthiazoline-6-
sulphonate). J. Chem. Soc., Perkin Trans. 2 1982, 805−812.
(b) Scott, S. L.; Chen, W. J.; Bakac, A.; Espenson, J. H. Spectroscopic
parameters, electrode-potentials, acid ionization-constants, and
electron-exchange rates of the 2,2’-azinobis(3-ethylbenzothiazoline-
6-sulfonate) radicals and ions. J. Phys. Chem. 1993, 97, 6710−6714.
(11) (a) Putter, J., Becker, R., Eds. Peroxidases, 3rd ed.; Verlag
̈
Chemie: Deerfield Beach, FL, 1983; Vol. 3. (b) Majcherczyk, A.;
Johannes, C.; Huttermann, A. Oxidation of aromatic alcohols by
laccase from Trametes versicolor mediated by the 2,2’-azinob-bis-(3-
ethylbezothizoline-6-sulphonic acid) cation radical and dication. Appl.
Microbiol. Biotechnol. 1999, 51, 267−276. (c) Kadnikova, E. N.;
Kostic, N. M. Oxidation of ABTS by hydrogen peroxide catalyzed by
horseradish peroxidase encapsulated into sol-gel glass. Effects of glass
matrix on reactivity. J. Mol. Catal. B: Enzym. 2002, 18, 39−48.
(d) Drozd, M.; Pietrzak, M.; Parzuchowski, P. G.; Malinowska, E.
Pitfalls and capabilities of various hydrogen donors in evaluation of
peroxidase-like activity of gold nanoparticles. Anal. Bioanal. Chem.
2016, 408, 8505−8513.
(7) (a) Wagner, M.; Brumelis, D.; Gehr, R. Disinfection of
wastewater by hydrogen peroxide or peracetic acid: development of
procedures for measurement of residual disinfectant and application
to a physicochemically treated municipal effluent. Water Environ. Res.
2002, 74, 33−50. (b) Ullrich, R.; Nuske, J.; Scheibner, K.; Spantzel, J.;
̈
Hofrichter, M. Novel haloperoxidase from the agaric basidiomycete
Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ.
Microbiol. 2004, 70, 4575−4581. (c) Ember, E.; Gazzaz, H. A.;
Rothbart, S.; Puchta, R.; van Eldik, R. MnII- A fascinating oxidation
catalyst: Mechanistic insight into the catalyzed oxidative degradation
of organic dyes by H2O2. Appl. Catal., B 2010, 95, 179−191.
(12) (a) Baudry, M.; Etienne, S.; Bruce, A.; Palucki, M.; Jacobsen,
E.; Malfroy, B. Salen-manganese complexes are superoxide dismutase-
mimics. Biochem. Biophys. Res. Commun. 1993, 192, 964−968.
(b) Doctrow, S. R.; Huffman, K.; Marcus, C. B.; Musleh, W.;
Bruce, A.; Baudry, M.; Malfroy, B. Salen-manganese complexes:
combined superoxide dismutase/catalase mimics with broad pharma-
cological efficacy. Adv. Pharmacol. 1997, 38, 247−269. (c) Kash, J. C.;
Xiao, Y.; Sally Davis, A.; Walters, K.-A.; Chertow, D. S.; Easterbrook,
J. D.; Dunfee, R. L.; Sandouk, A.; Jagger, B. W.; Shwartzman, L. M.;
Kuestner, R. E.; Wehr, N. B.; Huffman, K.; Rosenthal, R. A.; Ozinsky,
A.; Levine, R. L.; Doctrow, S. R.; Taubenberger, J. K. Treatment with
the reactive oxygen species scavenger EUK-207 reduces lung damage
and increases survival during 1918 influenza virus infection in mice.
Free Radical Biol. Med. 2014, 67, 235−247.
(8) (a) Zipplies, M. F.; Lee, W. A.; Bruice, T. C. Influence of
hydrogen ion activity and general acid-base catalysis on the rate of
decomposition of hydrogen peroxide by a novel nonaggregating
water-soluble iron(III) tetraphenylporphyrin derivative. J. Am. Chem.
Soc. 1986, 108, 4433−4445. (b) Eulering, B.; Schmidt, M.; Pinkernell,
V.; Karst, U.; Krebs, B. An unsymmetrical dinuclear iron(III) complex
with peroxidase properties. Angew. Chem., Int. Ed. Engl. 1996, 35,
1973−1974. (c) Nagano, S.; Tanaka, M.; Ishimori, K.; Watanabe, Y.;
Morishima, I. Catalytic roles of the distal site asparagine-histidine
couple in peroxidases. Biochemistry 1996, 35, 14251−14258. (d) Wei,
H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics
and their applications in H2O2 and glucose detection. Anal. Chem.
2008, 80, 2250−2254. (e) Elbaz, J.; Moshe, M.; Shlyahovsky, B.;
Willner, I. Cooperative multicomponent self-assembly of nucleic acid
structures for the activation of DNAzyme cascades: a paradigm for
DNA sensors and aptasensors. Chem. - Eur. J. 2009, 15, 3411−3418.
(f) Brausam, A.; Eigler, S.; Jux, N.; van Eldik, R. Mechanistic
investigations of the reaction of an iron(III) octa-anionic porphyrin
complex with hydrogen peroxide and the catalyzed oxidation of
diammonium-2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonate). Inorg.
Chem. 2009, 48, 7667−7678. (g) Lanza, V.; Vecchio, G. New
(13) (a) Bani, D.; Bencini, A. Developing ROS scavenging agents for
pharmacological purposes: recent advances in design of manganese-
based complexes with anti-inflammatory and anti-nociceptive activity.
Curr. Med. Chem. 2012, 19, 4431−4444. (b) Bahramikia, S.;
Yazdanparast, R. EUK-8 and EUK-134 reduce serum glucose and
lipids and ameliorate streptozotocin-induced oxidative damage in the
pancreas, liver, kidneys, and brain tissues of diabetic rats. Med. Chem.
Res. 2012, 21, 3224−3232. (c) Doctrow, S. R.; Liesa, M.; Melov, S.;
Shirihai, O. S.; Tofilon, P. Salen Mn complexes are superoxide
dismutase/catalase mimetics that protect the mitocondria. Curr. Inorg.
Chem. 2012, 2, 325−334.
(14) Lee, C.; Yoon, J. UV direct photolysis of 2,2’-azino-bis(3-
ethylbenzothiazoline-6-sulfonate) (ABTS) in aqueous solution:
D
Inorg. Chem. XXXX, XXX, XXX−XXX