Communication
ChemComm
Despite their negative charge, and the negative-inside Dc
across the plasma membrane, TPB display a novel intracellular
distribution. Most lysosome targeting is achieved through ion-
4 J. Zielonka, J. Joseph, A. Sikora, M. Hardy, O. Ouari, J. Vasquez-Vivar,
G. Cheng, M. Lopez and B. Kalyanaraman, Chem. Rev., 2017, 117,
1
0043–10120.
5
M. F. Ross, G. F. Kelso, F. H. Blaikie, A. M. James, A. Cocheme,
T. Filipovska, T. R. Da Ros, R. A. Hurd, H. M. Smith and
M. P. Murphy, Biochemistry (Moscow), 2005, 70, 222–230.
24,25
trapping by protonation of weak base in the acidic lysosomes.
The TPBBODIPY conjugates accumulate in the same way as
TPBCoumarin (Fig. 4 and Fig. S1, Movies 1, 2, ESI†), showing
that TPB-conjugates do not require such as site. Both TPBCou-
marin and TPBBODIPY showed similar distribution in both
HeLa and Cos7 cells showing the unique distribution was not
6
7
R. F. Flewelling and W. L. Hubbell, Biophys. J., 1986, 49, 531–540.
R. F. Flewelling and W. L. Hubbell, Biophys. J., 1986, 49, 541–552.
8 R. Scheu, B. M. Rankin, Y. Chen, K. C. Jena, D. Ben-Amotz and
S. Roke, Angew. Chem., Int. Ed., 2014, 53, 9560–9563.
L. Wang, Annu. Rev. Biochem., 2012, 81, 615–635.
9
10 R. Benz, Biophys. J., 1988, 54, 25–33.
dependent on the cell type (Fig. S3, ESI†). Their rapid endocytic 11 T. I. Rokitskaya, V. B. Luzhkov, G. A. Korshunova, V. N. Tashlitsky and
Y. N. Antonenko, Phys. Chem. Chem. Phys., 2019, 21, 23355–23363.
uptake is likely due to the strong binding of the TPB moiety to
1
1
1
2 L. L. Grinius, A. A. Jasaitis, Y. P. Kadziauskas, E. A. Liberman,
V. P. Skulachev, V. P. Topali, L. M. Tsofina and M. A. Vladimirova,
Biochim. Biophys. Acta, 1970, 216, 1–12.
3 T. I. Rokitskaya, A. V. Zaitsev, V. A. Ol’shevskaya, V. N. Kalinin,
M. M. Moisenovich, I. I. Agapov and Y. N. Antonenko, Biochemistry,
the potential energy well on the membrane surface. Since TPB-
conjugates could rapidly permeate the phospholipid bilayers of
SMPs, there is also likely to be some uptake into cells directly
through the plasma membrane. However, this is disfavoured by
the plasma membrane potential (30–60 mV, negative inside).
Any TPB-conjugates that do enter may be directed to the
lysosomes in response to the negative-inside potential across
2012, 77, 975–982.
4 M. M. Moisenovich, V. A. Ol’shevskaya, T. I. Rokitskaya,
A. A. Ramonova, R. G. Nikitina, A. N. Savchenko, V. V. Tatarskiy
Jr., M. A. Kaplan, V. N. Kalinin, E. A. Kotova, O. V. Uvarov,
I. I. Agapov, Y. N. Antonenko and A. A. Shtil, PLoS One, 2010,
3
3
the lysosomal membrane. The lack of co-localization with
5, e12717.
mitochondria is consistent with the expected thousand-fold 15 H. Flaschka and A. J. Barnard, Adv. Anal. Chem. Instrum., 1960, 1,
1
–117.
exclusion due to the large Dc (150–180 mV, negative inside)
across the mitochondrial inner membrane.
1
6 I. M. Riddlestone, A. Kraft, J. Schaefer and I. Krossing, Angew. Chem.,
Int. Ed., 2018, 57, 13982–14024.
In summary, we have generated a new targeting group that 17 J. F. Van Humbeck, M. L. Aubrey, A. Alsbaiee, R. Ameloot, G. W. Coates,
W. R. Dichtel and J. R. Long, Chem. Sci., 2015, 6, 5499–5505.
directs small molecules to the endosomal and lysosomal compart-
1
1
8 C. Gerleve and A. Studer, Angew. Chem., Int. Ed., 2020, 59, 1–6.
9 A. Music, A. N. Baumann, P. Spiess, A. Plantefol, T. C. Jagau and
D. Didier, J. Am. Chem. Soc., 2020, 142, 4341–4348.
ments within the cell in a way that complements current targeting
methods that employ ion-trapping of weak bases. By manipulat-
ing hydrophobicity and incorporating cleavable linkers and
membrane impermeant moieties it will be possible to fine tune
2
0 I. Hussain, J. Capricho and M. A. Yawer, Adv. Synth. Catal., 2016,
358, 3320–3349.
2
1 D. Vasu, H. Yorimitsu and A. Osuka, Synthesis, 2015, 3286–3291.
the location and kinetics of cell distribution of bioactive mole- 22 A. Franzke and A. Pfaltz, Synthesis, 2008, 245–252.
2
2
2
2
3 H. Nishida, N. Takada, M. Yoshimura, T. Sonoda and H. Kobayashi,
Bull. Chem. Soc. Jpn., 1984, 57, 2600–2604.
4 H. Zhu, J. Fan, J. Du and X. Peng, Acc. Chem. Res., 2016, 49,
2115–2126.
5 W. Xu, Z. Zeng, J.-H. Jiang, Y.-T. Chang and L. Yuan, Angew. Chem.,
Int. Ed., 2016, 55, 13658–13699.
6 T. I. Rokitskaya, S. S. Klishin, I. I. Severina, V. P. Skulachev and
Y. N. Antonenko, J. Membr. Biol., 2008, 224, 9–19.
cules. This approach provides new opportunities to selectively
manipulate and report on cell processes and to give a better
34,35
understanding of the role of the lysosome in autophagy
diseases such as cancer.
and in
36,37
This work was supported by the Medical Research Council
UK (MC_U105663142), a Wellcome Trust Investigator award
(
110159/A/15/Z) to MPM, by BBSRC (BB/I012826/1) and Wellcome 27 C. M. Armstrong and F. Bezanilla, J. Gen. Physiol., 1977, 70, 567–590.
2
2
3
3
3
8 A. F. Shoukry, S. S. Badawy and Y. M. Issa, Anal. Chem., 1987, 59,
078–1081.
9 B. H. Honig, W. L. Hubbell and R. F. Flewelling, Annu. Rev. Biophys.
Biophys. Chem., 1986, 15, 163–193.
Trust Investigator (110158/Z/15/Z) awards to RCH, a University of
Glasgow funded studentship to J. G. and from the Wellcome
Trust PhD programme in metabolic and cardiovascular diseases
1
0 G. J. Doherty and H. T. McMahon, Annu. Rev. Biochem., 2009, 78,
(RG88195) for FC.
857–902.
1 E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner and
T. Kirchhausen, Dev. Cell, 2006, 10, 839–850.
Conflicts of interest
2 L. von Kleist, W. Stahlschmidt, H. Bulut, K. Gromova, D. Puchkov,
M. J. Robertson, K. A. MacGregor, N. Tomilin, A. Pechstein, N. Chau,
M. Chircop, J. Sakoff, J. P. von Kries, W. Saenger, H. G. Krausslich,
O. Shupliakov, P. J. Robinson, A. McCluskey and V. Haucke, Cell,
2011, 146, 471–484.
There are no conflicts to declare.
Notes and references
33 H. Xu and D. Ren, Annu. Rev. Physiol., 2015, 77, 57–80.
1
2
3
M. P. Murphy and R. C. Hartley, Nat. Rev. Drug Discovery, 2018, 17, 34 W. W.-Y. Yim and N. Mizushima, Cell Discovery, 2020, 6, 6.
8
65–886.
35 Y.-K. Wong, J. Zhang, Z.-C. Hua, Q. Lin, H.-M. Shen and J. Wang,
Autophagy, 2017, 13, 1472–1486.
36 F. Geisslinger, M. M u¨ ller, A. M. Vollmar and K. Bartel, Front. Radiat.
Oncol., 2020, 10.
R. A. J. Smith, R. C. Hartley, H. M. Cocheme and M. P. Murphy,
Trends Pharmacol. Sci., 2012, 33, 341–352.
L. F. Yousif, K. M. Stewart and S. O. Kelley, ChemBioChem, 2009, 10,
1
939–1950.
37 B. Levine and G. Kroemer, Cell, 2008, 132, 27–42.
3
150
|
Chem. Commun., 2021, 57, 3147–3150
This journal is © The Royal Society of Chemistry 2021