Communications
Inoue, L. E. Orgel, J. Mol. Biol. 1985, 181, 271 – 279; f) T. Inoue,
G. F. Joyce, K. Grzeskowiak, L. E. Orgel, J. M. Brown, C. B.
Reese, J. Mol. Biol. 1984, 178, 669 – 676; g) G. von Kiedrowski,
Angew. Chem. 1986, 98, 932 – 934; Angew. Chem. Int. Ed. Engl.
1
986, 25, 932 – 935; h) I. A. Kozlov, B. De Bouvere, A. Van Aer-
schot, P. Herdewijn, L. E. Orgel, J. Am. Chem. Soc. 1999, 121,
856 – 5859; i) I. A. Kozlov, S. Pitsch, L. E. Orgel, Proc. Natl.
5
Acad. Sci. USA 1998, 95, 13448 – 13452; j) I. A. Kozlov, P. K.
Politis, A. Van Aerschot, R. Busson, P. Herdewijn, L. E. Orgel, J.
Am. Chem. Soc. 1999, 121, 2653 – 2656; k) I. A. Kozlov, L. E.
Orgel, P. E. Nielson, Angew. Chem. 2000, 112, 4462 – 4465;
Angew. Chem. Int. Ed. 2000, 39, 4292 – 4295; l) J. G. Schmidt, L.
Christensen, P. E. Nielsen, L. E. Orgel, Nucleic Acids Res. 1997,
25, 4792 – 4796; m) I. A. Kozlov, M. Zielinski, B. Allart, L.
Kerremans, A. Van Aerschot, R. Busson, P. Herdewijn, L. E.
Orgel, Chem. Eur. J. 2000, 6, 151 – 155; n) A. Luther, R.
Brandsch, G. von Kiedrowski, Nature 1998, 396, 245 – 248; o) T.
Li, K. C. Nicolaou, Nature 1994, 369, 218 – 221.
[
4] a) Z.-Y. J. Zhan, J. Ye, X. Li, D. G. Lynn, Curr. Org. Chem. 2001,
5, 885 – 902; b) Z.-Y. J. Zhan, D. G. Lynn, J. Am. Chem. Soc.
1997, 119, 12420 – 12421; c) P. Luo, J. C. Leitzel, Z.-Y. J. Zhan,
D. G. Lynn, J. Am. Chem. Soc. 1998, 120, 3019 – 3031; d) X. Li,
Z.-Y. J. Zhan, R. Knipe, D. G. Lynn, J. Am. Chem. Soc. 2002, 124,
746 – 747; e) X. Li, D. G. Lynn, Angew. Chem. 2002, 114, 4749;
Angew. Chem. Int. Ed. 2002, 41, 4567 – 4569; f) J. T. Goodwin,
D. G. Lynn, J. Am. Chem. Soc. 1992, 114, 9197 – 9198; g) J. C.
Leitzel, D. G. Lynn, Chem. Rec. 2001, 1, 53 – 62; h) K. Fujimoto,
S. Matsuda, N. Takahashi, I. Saito, J. Am. Chem. Soc. 2000, 122,
5646 – 5647.
precursors 9, 10, and 12, it seems likely that the second
polymerization (from 12 to 13) might start from the terminal
norbornene moiety in 12.
In summary, we have demonstrated an unprecedented
example on the replication of a single-stranded polynorbor-
nene, leading to its complementary polynorbornene deriva-
tive. The process has been shown to involve an unsymmetrical
double-stranded polymer 13, which has been thoroughly
characterized by spectroscopic means as well as by STM
[
5] a) D. H. Lee, J. R. Granja, J. A. Martinez, K. Severin, M. R.
Ghadiri, Nature 1996, 382, 525 – 528; b) K. Severin, D. H. Lee,
J. A. Martinoz, M. Vieth, M. R. Ghadiri, Angew. Chem. 1998,
110, 133 – 135; Angew. Chem. Int. Ed. 1998, 37, 126 – 128;
c) D. H. Lee, K. Severin, Y. Yokobayashi, M. R. Ghadiri,
Nature 1997, 390, 591 – 594; d) S. Yao, I. Ghosh, R. Zutshi, J.
Chmielewski, Angew. Chem. 1998, 110, 489 – 492; Angew. Chem.
Int. Ed. 1998, 37, 478 – 481; e) K. S. Severin, D. H. Lee, J. A.
Martinoz, M. R. Ghadiri, Chem. Eur. J. 1997, 3, 1017 – 1024.
[
8]
images. As described in our previous paper, a bisnorbornene
compound connected by an appropriate linker has provided a
unique entry for the synthesis of a double-stranded DNA-like
polymer. Since the double-stranded polymer can easily be
[6] a) T. Tjivikua, P. Ballester, J. Rebek, Jr., J. Am. Chem. Soc. 1990,
112, 1249 – 1250; b) Q. Feng, T. K. Park, J. Rebek, Jr., Science
[
8]
transformed into two single-stranded polymers, the present
replication study adds another novel DNA-like feature to
bispolynorbornenes. Further extension of this system is in
progress in our laboratory.
1992, 256, 1179 – 1180; c) J. I. Hong, Q. Feng, V. Rotello, J.
Rebek, Jr., Science 1992, 255, 848 – 850; d) A. Terfort, G.
von Kiedrowski, Angew. Chem. 1992, 104, 626 – 628; Angew.
Chem. Int. Ed. Engl. 1992, 31, 654 – 656; e) F. Persico, J. D.
Wuest, J. Org. Chem. 1993, 58, 95 – 99; f) B. Wang, I. O.
Sutherland, Chem. Commun. 1997, 1495 – 1496; g) T. R. Kelly,
C. Zhao, G. J. Bridger, J. Am. Chem. Soc. 1989, 111, 3744 – 3745;
h) B. G. Bag, G. von Kiedrowski, Angew. Chem. 1999, 111, 3960 –
3962; Angew. Chem. Int. Ed. 1999, 38, 3713 – 3714; i) A.
Robertson, D. Philp, N. Spencer, Tetrahedron 1999, 55, 11365 –
Received: February 2, 2007
Published online: April 23, 2007
Keywords: ferrocenes · polynorbornenes · replication ·
.
ring-opening polymerization · scanning tunneling microscopy
11384; j) M. Kindermann, I. Stahl, M. Reimild, W. M. Pankau,
G. von Kiedrowski, Angew. Chem. 2005, 117, 6908 – 6913;
Angew. Chem. Int. Ed. 2005, 44, 6750 – 6755; k) E. Kassianidis,
R. J. Pearson, D. Philp, Org. Lett. 2005, 7, 3833 – 3836; l) G.
von Kiedrowski, L.-H. Eckardt, K. Naumann, W. M. Pankau, M.
Reimold, M. Rein, Pure Appl. Chem. 2003, 75, 609 – 619; m) V.
Zykov, E. Mytilinaios, B. Adams, H. Lipson, Nature 2005, 435,
[
1] B. Lewin, Gene VII, Oxford University Press, Oxford, 2000,
chap. 13.
[
2] For reviews, see: a) X. Liu, D. R. Liu, Angew. Chem. 2004, 116,
4
956 – 4979; Angew. Chem. Int. Ed. 2004, 43, 4848 – 4870; b) L. J.
Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. 2001, 113,
446 – 2492; Angew. Chem. Int. Ed. 2001, 40, 2382 – 2426; c) A.
Robertson, A. J. Sinclair, D. Philp, Chem. Soc. Rev. 2000, 29,
41 – 152; d) L. E. Orgel, Nature 1992, 358, 203 – 209; e) E. W.
1
63 – 164.
7] a) P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996,
18, 100 – 110; b) J. G. Hamilton in Handbook of Metathesis,
2
[
1
1
Wintner, J. Rebek, Jr., Acta Chem. Scand. 1996, 50, 469 – 485;
f) L. E. Orgel, Acc. Chem. Res. 1995, 28, 109 – 118.
3] a) L. E. Orgel, R. Lohrmann, Acc. Chem. Res. 1974, 7, 368 – 377;
b) W. S. Zielinski, L. E. Orgel, Nature 1987, 327, 346 – 347; c) R.
Lohrmann, L. E. Orgel, J. Mol. Biol. 1980, 142, 555 – 567; d) T.
Inoue, L. E. Orgel, Science 1983, 219, 859 – 862; e) C. B. Chen, T.
Vol. 3 (Ed.: R. H. Grubbs), Wiley-VCH, Weinheim, 2003,
pp. 143 – 179; c) C. Slugovc, Macromol. Rapid Commun. 2004,
25, 1283.
[
[8] H.-C. Yang, S.-Y. Lin, H.-c. Yang, C.-L. Lin, L. Tsai, S.-L. Huang,
I.-W. P. Chen, C.-h. Chen, B.-Y. Jin, T.-Y. Luh, Angew. Chem.
2006, 118, 740 – 744; Angew. Chem. Int. Ed. 2006, 45, 726 – 730.
4
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4481 –4485