9 K. O. Lidström, PharmaChem, 2007, 6, 5–7.
with the change in absorbance maximum, affords a hypothesis
of a difference of binding of the cofactor. Hypothetically, PLP
does not bind as a Schiff-base to the catalytic lysine, but is
bound in the PLP-binding pocket and may form a hemimercaptal
with the introduced cysteine residue. The impact of this cannot
be explained without a deeper investigation of the reaction mech-
anism and putative changes thereof and/or a crystal structure.
10 J. S. Shin and B. G. Kim, Biotechnol. Bioeng., 1999, 65, 206–211.
11 M. D. Truppo, J. D. Rozzell, J. C. Moore and N. J. Turner, Org. Biomol.
Chem., 2009, 7, 395–398.
12 J. Ward and R. Wohlgemuth, Curr. Org. Chem., 2010, 14, 1914–1927.
13 P. Tufvesson, J. Lima-Ramos, J. S. Jensen, N. Al-Haque, W. Neto and
J. M. Woodley, Biotechnol. Bioeng., 2011, 108, 1479–1493.
14 D. Koszelewski, I. Lavandera, D. Clay, G. M. Guebitz, D. Rozzell and
W. Kroutil, Angew. Chem., Int. Ed., 2008, 47, 9337–9340.
15 B. M. Nestl, B. A. Nebel and B. Hauer, Curr. Opin. Chem. Biol., 2011,
15, 187–193.
16 C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam,
W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine,
G. W. Huisman and G. J. Hughes, Science, 2010, 329, 305–309.
17 K. E. Cassimjee, C. Branneby, V. Abedi, A. Wells and P. Berglund,
Chem. Commun., 2010, 46, 5569–5571.
18 M. Höhne, S. Kuhl, K. Robins and U. T. Bornscheuer, ChemBioChem,
2008, 9, 363–365.
19 M. D. Truppo, N. J. Turner and J. D. Rozzell, Chem. Commun., 2009,
2127–2129.
20 J. H. Seo, D. Kyung, K. Joo, J. Lee and B. G. Kim, Biotechnol. Bioeng.,
2011, 108, 253–263.
21 B. K. Cho, H. Y. Park, J. H. Seo, J. Kim, T. J. Kang, B. S. Lee and
B. G. Kim, Biotechnol. Bioeng., 2008, 99, 275–284.
22 M. Svedendahl, C. Branneby, L. Lindberg and P. Berglund, Chem-
CatChem, 2010, 2, 976–980.
23 B. Y. Hwang, S. H. Ko, H. Y. Park, J. H. Seo, B. S. Lee and B. G. Kim,
J. Microbiol. Biotechnol., 2008, 18, 48–54.
Conclusions
We found a key point mutation in Cv-ωTA which increases the
specificity constant for the aliphatic amine (S)-1-PEA and a
range of 4′-substituted acetophenones. Plausibly, a more effective
enzyme for larger aliphatic substrates has been created. The
variant, Trp60Cys, has a more general nature than the wild type
for 4′-substituted acetophenones since their specificity constants
can be plotted in good agreement with the Swain–Lupton
equation, in contrast to the wild type enzyme. The point mutation
was found by structural alignments of homology models of other
engineered ωTAs and is therefore of interest for understanding
the mechanism and the development of rational design for this
enzyme group. The straightforward variant Trp60Ala was a poor
catalyst, the role of the cysteine residue in this position is not
trivial and a suitable subject for further investigation.
24 A. R. Martin, R. DiSanto, I. Plotnikov, S. Kamat, D. Shonnard and
S. Pannuri, Biochem. Eng. J., 2007, 37, 246–255.
25 H. Yun, B. Y. Hwang, J. H. Lee and B. G. Kim, Appl. Environ. Micro-
biol., 2005, 71, 4220–4224.
26 S. Pannuri, S. Kamat and A. R. M. Garcia, World Pat., WO 2006/063336
A063332, Cambrex North Brunswick Inc., 2006.
27 G. Matcham, M. Bhatia, W. Lang, C. Lewis, R. Nelson, A. Wang and
W. Wu, Chimia, 1999, 53, 584–589.
28 M. Höhne, S. Schätzle, H. Jochens, K. Robins and U. T. Bornscheuer,
Nat. Chem. Biol., 2010, 6, 807–813.
29 M. S. Humble, K. E. Cassimjee, V. Abedi, H.-J. Federsel and
P. Berglund, ChemCatChem, 2012, DOI: 10.1002/cctc.201100487.
30 K. E. Cassimjee, M. S. Humble, V. Miceli, C. G. Colomina and
P. Berglund, ACS Catal., 2011, 1, 1051–1055.
Acknowledgements
The authors would like to acknowledge Prof. Wolfgang Kroutil
(Graz University) for supplying the gene for Cv-ωTA, Dr Linda
Fransson (KTH) for fruitful discussions and VINNOVA (The
Swedish Governmental Agency for Innovation Systems) for
financial support.
31 M. S. Humble, K. E. Cassimjee, M. Håkansson, Y. R. Kimbung,
B. Walse, V. Abedi, H.-J. Federsel, P. Berglund and D. T. Logan, FEBS
J., 2012, 279, 779–792.
32 L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 96–103.
33 C. G. Swain, J. Org. Chem., 1984, 49, 2005–2010.
34 C. G. Swain and E. C. Lupton, J. Am. Chem. Soc., 1968, 90, 4328–
4337.
Notes and references
1 R. B. Silverman, The Organic Chemistry of Enzyme-Catalysed Reactions,
Academic Press, Elsevier Science, 2000.
2 G. G. Hammes and J. L. Haslam, Biochemistry, 1969, 8, 1591–1598.
3 U. Kaulmann, K. Smithies, M. E. B. Smith, H. C. Hailes and J. M. Ward,
Enzyme Microb. Technol., 2007, 41, 628–637.
35 C. G. Swain, S. H. Unger, N. R. Rosenquist and M. S. Swain, J. Am.
Chem. Soc., 1983, 105, 492–502.
4 M. Höhne and U. T. Bornscheuer, ChemCatChem, 2009, 1, 42–51.
5 D. Koszelewski, D. Clay, D. Rozzell and W. Kroutil, Eur. J. Org. Chem.,
2009, 2289–2292.
36 P. Schuster and H. Winkler, Tetrahedron, 1970, 26, 2249–2256.
37 U. Schell, R. Wohlgemuth and J. M. Ward, J. Mol. Catal. B: Enzym.,
2009, 59, 279–285.
6 D. Koszelewski, M. Göritzer, D. Clay, B. Seisser and W. Kroutil, Chem-
CatChem, 2010, 2, 73–77.
38 S. Schätzle, M. Höhne, E. Redestad, K. Robins and U. T. Bornscheuer,
Anal. Chem., 2009, 81, 8244–8248.
7 D. Koszelewski, I. Lavandera, D. Clay, D. Rozzell and W. Kroutil, Adv.
Synth. Catal., 2008, 350, 2761–2766.
8 D. Koszelewski, D. Pressnitz, D. Clay and W. Kroutil, Org. Lett., 2009,
11, 4810–4812.
39 V. J. Harding and R. M. MacLean, J. Biol. Chem., 1916, 25, 337–350.
40 P. W. Riddles, R. L. Blakeley and B. Zerner, Methods Enzymol., 1983,
91, 49–60.
41 G. L. Ellman, Arch. Biochem. Biophys., 1959, 82, 70–77.
5470 | Org. Biomol. Chem., 2012, 10, 5466–5470
This journal is © The Royal Society of Chemistry 2012