Y. Liu, G. W. Gribble / Tetrahedron Letters 42 (2001) 2949–2951
2951
1
6. Compound 5 (90%): Mp 77°C (decomposed into tar) (lit.5
1550, 1500, 1461, 1344, 1228 cm−1; H NMR (acetone-d6)
l 8.33 (d, 1H, J=8.0 Hz), 7.76 (d, 1H, J=8.5 Hz), 7.51
(m, 1H), 7.40 (m, 1H), 4.25 (s, 3H).
1
mp 98–99°C); H NMR (CDCl3) l 8.1 (s, br, 1H), 7.55
(m, 1H), 7.34 (m, 1H), 7.16–7.08 (m, 2H), 6.74 (m, 1H);
13C NMR (CDCl3) l 138.9, 129.8, 122.5, 120.5, 119.4,
112.9, 110.3, 74.9. HRMS m/z calcd for C8H6IN (M+):
242.9545; found: 242.9542.
15. Baiocchi, L.; Giannangeli, M. J. Heterocyclic Chem.
1988, 25, 1905–1909.
16. Gribble, G. W.; Silva, R. A.; Saulnier, M. G. Synth.
Commun. 1999, 29, 729–747 and previous papers.
17. Compound 12 (41%): Mp 207–208°C (lit.18 mp 206–
208°C); IR (film) wmax 2922, 2856, 1656, 1594, 1517, 1394,
1
7. Compound 6 (91%): Mp 64–65°C (lit.8 mp 76–78°C); H
NMR (CDCl3) l 7.41 (m, 1H), 7.29 (m, 1H), 7.23–7.14
(m, 2H), 3.90 (s, 3H); 13C NMR (DMSO-d6) l 137.9,
130.9, 122.5, 120.6, 120.3, 110.9, 99.7, 71.6, 35.9.
1233 cm−1; H NMR (CDCl3) l 8.49 (d, 1H, J=8.0 Hz),
1
8. Ezquerra, J.; Pedregal, C.; Lamas, C.; Barluenga, J.;
Pe´rez, M.; Garc´ıa-Mart´ın, M. A.; Gonza´lez, J. M. J. Org.
Chem. 1996, 61, 5804–5812. This paper describes a syn-
thesis of 6 from 2-trimethylsilyl-N-methylindole.
8.24 (d, 1H, J=7.5 Hz), 8.20 (d, 1H, J=7.5 Hz), 7.75–
7.71 (m, 2H), 7.51 (m, 2H), 7.43 (m, 1H), 4.29 (s, 3H).
18. Boogaard, A. T.; Pandit, U. K.; Koomen, G.-J. Tetra-
hedron 1994, 50, 4811–4828.
9. Compound 8 (99%): Oil; IR (film) wmax 3056, 2933, 1611,
19. General procedure: A solution of 6 (0.050 g, 0.13 mmol)
in dry THF (10 mL) was cooled to −78°C and treated
dropwise with tert-butyllithium (5–10 equiv. of 1.7 M
pentane solution). The resulting bright yellow solution
was stirred for 20 min at −78°C and then treated with the
electrophile (1.3 mmol; in the case of phthalic anhydride,
0.13 mol). The reaction was allowed to warm to room
temperature, poured into water, and extracted with ethyl
acetate. The organic phase was dried (MgSO4), and con-
centrated in vacuo to afford the crude product. Flash
chromatography over silica gel gave the purified products
in the yields indicated.
20. For other examples of dilithio heterocycles, see (a) Ried,
W.; Bender, H. Chem. Ber. 1956, 89, 1574–1577; (b)
Zaluski, M.-C.; Robba, M.; Bonhomme, M. Bull. Soc.
Chim. Fr. 1970, 1838–1846; (c) Srogl, J.; Janda, M.;
Stibor, I.; Procha´zkova´, H. Z. Chem. 1971, 11, 464; (d)
Janda, M.; Srogl, J.; Stibor, I.; Nemec, M.; Vopatrna´, P.
Synthesis 1972, 545–547; (e) Cugnon de Sevrivourt, M.;
Robba, M. Bull. Soc. Chim. Fr. 1977, 142–144; (f)
Feringa, B. L.; Hulst, R.; Rikers, R.; Brandsma, L.
Synthesis 1988, 316–318.
1506, 1456, 1422, 1317, 1239, 1150, 1072, 1006, 741 cm−1
.
1H NMR (CDCl3) l 7.65 (m, 1H), 7.35 (d, 1H, J=8.5
Hz), 7.27–7.21 (m, 1H), 7.15–7.11 (m, 1H), 7.07 (d, 1H,
J=3.0 Hz), 6.50 (d, 1H, J=3.0 Hz), 3.81 (s, 3H). This
material was identical to a commercial sample of N-
methylindole by NMR and TLC.
10. Compound 9 (82%): Mp 161°C (lit.11 mp 158°C); IR
(film) wmax 2920, 2848, 2365, 1679, 1653, 1478, 1386, 1345,
1
1134, 1015, 898, 749 cm−1; H NMR (acetone-d6) l 10.77
(s, 1H), 10.74 (s, 1H), 8.39 (d, 1H, J=8.1 Hz), 7.72 (d,
1H, J=8.7 Hz), 7.58–7.53 (t of d, 1H, J=0.6, 8.1 Hz),
7.43–7.38 (t, 1H, J=8.1 Hz), 4.22, (s, 3H).
11. Dupas, G.; Duflos, J.; Que´guiner, G. J. Heterocyclic
Chem. 1980, 17, 93–96.
12. Compound 10 (75%): Oil (lit.13 mp 35°C); IR (film) wmax
2956, 2356, 1706, 1528, 1472, 1439, 1400, 1372, 1250,
1217, 1156, 1106, 1028 cm−1 1H NMR (acetone-d6) l
;
8.08 (d, 1H, J=8.5 Hz), 7.59 (d, 1H, J=8.5 Hz), 7.39 (m,
1H), 7.30 (m, 1H), 3.99 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H).
13. Acheson, R. M.; Vernon, J. M. J. Chem. Soc. 1962,
1148–1157.
14. Compound 11 (66%): Mp 205–207°C (dec.) (lit.15 mp
208–209°C (dec.)); IR (film) wmax 3144, 2356, 1700, 1600,
21. Reck, C. E.; Bretschneider-Hurley, A.; Hegg, M. J.;
Winter, C. H. Organometallics 1998, 17, 2906–2911.
.
.