Conjugated Enediynes
J. Am. Chem. Soc., Vol. 122, No. 9, 2000 1943
Table 3. Preparation of Cyclic Enediynes and their Complexes 48 via Coupling Dibromides 46
entry
X
hal
base
equiv
additive
equiv
temp
methoda
%47
%48
%50
1
2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2 CH2
CH2CH2CH2
CH2CH2CH2
CH2
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
Br
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
NaHMDS
KHMDS
LDA
2.2
2.2
2.2
4
NA
1.1
1.1
1.1
1.1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
-78
-85
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
-45
A
B
B
B
B
B
B
B
B
B
B
B
B
B
C
D
B
C
D
C
<1
0
14
15
20
15
5
10
15
22
10
8
10
8
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
92
∼
∼
11
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
55
89
HMPA
HMPA
HMPA
HMPA
HMPA
HMPA
HMPA
HMPA
TPP
3
4
5
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
6
7
8
9
LTMP
10
11
12
13
14
15
16
17
18
19
20
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
LiHMDS
TMEDA
DMPU
DMI
HMPA
TEP
HMPA
HMPA
HMPA
HMPA
HMPA
95
∼
12
90
∼
CH2
∼
a Method A: base added to 46; method B: base + additive added to 46; method C: base added to 46 + additive; method D: as method C, then
immediate complexation with Co2CO8.
We opted to synthesize a preformed C-10 cyclic enediyne
with a functionalized spacer group attached, then couple this
unit to an aryl moiety via its cobalt carbonyl complex. A route
was thus developed for the synthesis of appropriate complexes
(Scheme 10). Commercially available methyl-5-hexynoate (51)
was first converted to diyne 52. Hydroxymethylation gave key
diol 53, which when followed by bromination allowed carbenoid
coupling to give the desired enediyne 54 in high yield. For
practical purposes it was immediately protected as the corre-
sponding cobalt carbonyl complex. Alternatively, it was found
that in situ deprotective bromination of 53 gave rise to the
corresponding tribromide, which itself underwent cyclization
to give the isolatable bromoenediyne in moderate yield, and
which could likewise be converted to the complex (56). The
key deprotection of the tert-butyldimethylsilyl ether of the cobalt
carbonyl complex derived from 54 was then investigated. Initial
concerns regarding the acid sensitivity of the cobalt moiety
proved to be unfounded; conventional conditions (TsOH/MeOH/
25 °C) successfully afforded the corresponding alcohol 55 in
high yield.
Routine functional group interconversions such as Swern
oxidation to the aldehyde 57 (72%), displacement to give the
bromide 56 (84%), or esterification to give 58 were not impeded
by the cobalt carbonyl group. In principle, these species offer
a variety of regimens for attachment to biomolecule binding
agents to be pursued, allowing the development of libraries of
hybrid enediynes using shelf-stable precursors. Prior to initiating
these studies, we wished to confirm the ability of the enediyne
core itself to undergo cycloaromatization. Accordingly, substrate
55 was subjected to decomplexation. We had previously found
that tetrabutylammonium fluoride (TBAF) is an effective agent
for this transformation using linear enediynes,23 and were
delighted to observe that quantitative deprotection at low-
Figure 2.
allowed chromatographic purification of the masked enediynes
48 where necessary, and more importantly, permitted shelf-
storage for extended periods. The process was successful for
the C-11 and C-9 enediynes, but in the latter case, concomitant
cycloaromatization to produce 50 mandates isolation as the
cobalt complex (entries 19 and 20). The isolation of this C-9
enediyne complex is noteworthy, constituting the first synthesis
of this interesting species, the Bergman cycloaromatization
profile of which has yet to be studied.21
With an efficient synthesis of cyclic enediynes secure, we
turned our attention to the preparation of cyclic enediynes which
can be potentially tethered to molecules with specific biomo-
lecular targets. For DNA binding agents, several investigations
of this nature have been reported, that used an eclectic mix of
protocols to synthesize the desired cyclic enediyne component.22
Encouraged by the near quantitative yields of 48 obtained
following optimization of the cyclization-complexation strat-
egy, we turned our attention toward incorporation of this
methodology in the preparation of shelf-stable synthons (Figure
2).
(21) For computational analysis of cyclic enediynes see: Snyder, J. P.
J. Am. Chem. Soc. 1990, 112, 5367.
(22) (a) Nicolaou, K. C.; Smith, A. L.; Yue, E. W. Proc. Natl. Acad.
Sci. U.S.A. 1993, 90, 5881. (b) Toshima, K.; Ohta, K.; Ohashi, A.;
Nakamura, T.; Nakata, M.; Matsumura, S. J. Chem. Soc. Chem. Commun.
1993, 1525. (c) Tokuda, M.; Fujiwara, K.; Gomibuchi, T.; Hirama, M.;
Uesugi, M.; Sugiura, Y. Tetrahedron Lett. 1993, 34, 669. (d) Semmelhack,
M. F.; Gallagher, J. J.; Ding, W.; Krishnamurthy, G.; Babine, R.; Ellestad,
G. A. J. Org. Chem. 1994, 59, 4357. (e) Boger, D. L.; Zhou, J. J. Org.
Chem. 1993, 58, 3018. (f) Wender, P. A.; Zercher, C. K.; Beckham, S.;
Haubold, E. M. J. Org. Chem. 1993, 58, 5867. (g) Funk, R. L.; Young, E.
R. R.; Williams, R. M.; Flanagan, M. F.; Cecil, T. L. J. Am. Chem. Soc.
1996, 118, 3291. (h) Takahashi, T.; Tanaka, H.; Matsuda, A.; Yamada, H.;
Matsumoto, T.; Sugiura, Y. Tetrahedron Lett. 1996, 37, 2433. (i) Myers,
A. G.; Cohen, S. B.; Tom, N. J.; Madar, D. J.; Fraley, M. E. J. Am. Chem.
Soc. 1995, 117, 7574. (j) Hay, M. P.; Wilson, W. R.; Denny, W. A. Bioorg.
Med. Chem. Lett. 1995, 5, 2829.
(23) Jones, G. B.; Wright, J. M.; Rush, T. M.; Plourde, G. W.; Kelton,
T. F.; Mathews, J. E.; Huber, R. S.; Davidson, J. P. J. Org. Chem. 1997,
62, 9379.
(24) (a) Zein, N.; Casazza, A. M.; Doyle, T. W.; Leet, J. E.; Schroeder,
D. R.; Solomon, W.; Nadler, S. G. Proc. Natl. Acad. Sci. U.S.A. 1993, 90,
8009. (b) Zein, N.; Solomon, W.; Casazza, A. M.; Kadow, J. F.; Krishnan,
B. S.; Tun, M. M.; Vyas, D. M.; Doyle, T. W. Bioorg. Med. Chem. Lett.
1993, 3, 1351. (c) Zein, N.; Reiss, P.; Bernatowicz, M.; Bolgar, M. Chem.
Biol. 1995, 2, 45. (d) Jones, G. B.; Kilgore, M. W.; Pollenz, R. S.; Li, A.;
Mathews, J. E.; Wright, J. M.; Huber, R. S.; Tate, P. L.; Price, T. L.; Sticca,
R. P. Bioorg. Med. Chem. Lett. 1996, 6, 1971-1976. For mechanistic
insights see: (e) Braslau, R.; Anderson, M. O. Tetrahedron Lett. 1998, 39,
4227.