594
D. Habibi et al./Chemical Papers 69 (4) 586–595 (2015)
one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in
Gupta, N., Sonu, Kad, G. L., & Singh, J. (2007). Acidic ionic
liquid [bmim]HSO4: An efficient catalyst for acetalization
and thioacetalization of carbonyl compounds and their sub-
sequent deprotection. Catalysis Communications, 8, 1323–
1328. DOI: 10.1016/j.catcom.2006.11.030.
Habibi, D., Mahmoudi, N., & Marvi, O. (2007). Green pro-
cedure for the synthesis of phthalazino[2,3-b]phthalazine-
5,7,12,14-tetraones. Synthetic Communications, 37, 3165–
3171. DOI: 10.1080/00397910701545247.
Habibi, D., & Shamsian, A. (2013). An efficient one-pot syn-
thesis of dihydropyrano[c] chromenes and amino-2-chromenes
under solvent-free conditions. Journal of Chemical Research,
37, 253–255. DOI: 10.3184/174751913x13639572643562.
Habibi, D., Zolfigol, M. A., & Safaee, M. (2013). Synthe-
sis of 1,4-dihydropyridines bearing a carbamate moiety on
the 4-position. Journal of Chemistry, 2013, 495982. DOI:
10.1155/2013/495982.
aqueous media. Synlett, 2006, 263–266. DOI: 10.1055/s-2006-
926227.
Ballini, R., Bigi, F., Conforti, M. L., De Santis, D., Maggi,
R., Oppici, G., & Sartori, G. (2000). Multicomponent re-
actions under clay catalysis. Catalysis Today, 60, 305–309.
DOI: 10.1016/s0920-5861(00)00347-3.
Banerjee, S., & Sereda, G. (2009). One-step, three-component
synthesis of highly substituted pyridines using silica nanopar-
ticle as reusable catalyst. Tetrahedron Letters, 50, 6959–6962.
DOI: 10.1016/j.tetlet.2009.09.137.
Banerjee, S., Horn, A., Khatri, H., & Sereda, G. (2011). A
green one-pot multicomponent synthesis of 4H-pyrans and
polysubstituted aniline derivatives of biological, pharmaco-
logical, and optical applications using silica nanoparticles as
reusable catalyst. Tetrahedron Letters, 52, 1878–1881. DOI:
10.1016/j.tetlet.2011.02.031.
Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A.,
Bartók, M., Felf¨oldi, K., Sz¨oll¨osi, G., & Bartók, T. (1999). Rigid
cinchona conformers in enantioselective catalytic reactions:
new cinchona-modified platinum catalysts in the Orito reac-
tion. Catalysis Letters, 61, 1–5. DOI: 10.1023/a:1019008519
015.
&
El-Taweel, F. M. A. A. (1987). Nitriles in hetero-
cyclic synthesis: Novel synthesis of benzo[c]coumarin and of
benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 26,
903–907. DOI: 10.3987/r-1987-04-0903.
Han, F., Yang, L., Li, Z., & Xia, C. (2012). Sulfonic acid-
functionalized ionic liquids as metal-free, efficient and reusab-
le catalysts for direct amination of alcohols. Advanced Syn-
thesis & Catalysis, 354, 1052–1060. DOI: 10.1002/adsc.2011
00886.
Bonsignore, L., Loy, G., Secci, D., & Calignano, A. (1993).
Synthesis and pharmacological activity of 2-oxo-(2H)-1-
benzopyran-3-carboxamide derivatives. European Journal
of Medicinal Chemistry, 28, 517–520. DOI: 10.1016/0223-
5234(93)90020-f.
Hasaninejad, A., Shekouhy, M., Golzar, N., Zare, A.,
&
Bräse, S., Gil, C., & Knepper, K. (2002). The recent impact of
solid-phase synthesis on medicinally relevant benzoannelated
nitrogen heterocycles. Bioorganic & Medicinal Chemistry,
10, 2415–2437. DOI: 10.1016/s0968-0896(02)00025-1.
Chen, L., Li, Y. Q., Huang, X. J., & Zheng, W. J. (2009).
N,N-dimethylamino-functionalized basic ionic liquid cat-
alyzed one-pot multicomponent reaction for the synthesis
of 4H-benzo[b]pyran derivatives under solvent-free condition.
Heteroatom Chemistry, 20, 91–94. DOI: 10.1002/hc.20516.
Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K.
J., Forbes, D. C., & Davis, J. H., Jr. (2002). Novel Brønsted
acidic ionic liquids and their use as dual solvent–catalysts.
Journal of the American Chemical Society, 124, 5962–5963.
DOI: 10.1021/ja026290w.
Doroodmand, M. M. (2011). Silica bonded n-propyl-4-aza-
1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly
efficient, reusable and new heterogeneous catalyst for the syn-
thesis of 4H-benzo[b]pyran derivatives. Applied Catalysis A:
General, 402, 11–22. DOI: 10.1016/j.apcata.2011.04.012.
Heravi, M. M., Jani, B. A., Derikvand, F., Bamoharram, F.
F., & Oskooie, H. A. (2008). Three component, one-pot
synthesis of dihydropyrano[3,2-c]chromene derivatives in the
presence of H6P2W18O62
cyclable catalyst. Catalysis Communications, 10, 272–275.
DOI: 10.1016/j.catcom.2008.08.023.
·
18H2O as a green and re-
Jiménez-González, C., & Constable, D. J. C. (2011). Green
chemistry and engineering: A practical design approach.
Hoboken, NJ, USA: Wiley.
Kamal, A., & Chouhan, G. (2004). Investigations towards
the chemoselective thioacetalization of carbonyl compounds
by using ionic liquid [bmim]Br as a recyclable catalytic
medium. Advanced Synthesis & Catalysis, 346, 579–582.
DOI: 10.1002/adsc.200303171.
Khurana, J. M., & Kumar, S. (2009). Tetrabutylammonium bro-
mide (TBAB): a neutral and efficient catalyst for the synthe-
sis of biscoumarin and 3,4-dihydropyrano[c]chromene deriva-
tives in water and solvent-free conditions. Tetrahedron Let-
ters, 50, 4125–4127. DOI: 10.1016/j.tetlet.2009.04.125.
Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide-
catalysed one-pot multi-component reaction for efficient syn-
thesis of amino-benzochromenes in aqueous media. Chemical
Papers, 68, 1104–1112. DOI: 10.2478/s11696-014-0554-6.
Konkoy, C. S., Fick, D. B., Cai, S. X., Lan, N. C., & Keana,
J. F. W. (2000). WO Patent No. 2000075123 (A1). Geneva,
Switzerland: World Intellectual Property Organization.
Liu, H. F., Zeng, F. X., Deng, L., Liao, B., Pang, H., &
Guo, Q. X. (2013). Brønsted acidic ionic liquids catalyze
the high-yield production of diphenolic acid/esters from re-
newable levulinic acid. Green Chemistry, 15, 81–84. DOI:
10.1039/c2gc36630d.
Darbarwar, M., & Sundaramurthy, V. (1982). Synthesis of
coumarins with 3:4-fused ring systems and their physiologi-
cal activity. Synthesis, 1982, 337–388. DOI: 10.1055/s-1982-
29806.
Davis, J. H., Jr. (2004). Task-specific ionic liquids. Chemistry
Letters, 33, 1072–1077. DOI: 10.1246/cl.2004.1072.
Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic
liquid (molten salt) phase organometallic catalysis. Chemical
Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.
Fang, D., Zhou, X. L., Ye, Z. W., & Liu, Z. L. (2006). Brønsted
acidic ionic liquids and their use as dual solvent–catalysts for
Fischer esterifications. Industrial & Engineering Chemistry
Research, 45, 7982–7984. DOI: 10.1021/ie060365d.
Fang, D., Zhang, H. B., & Liu, Z. L. (2010). Synthesis of 4H-
benzopyrans catalyzed by acyclic acidic ionic liquids in aque-
ous media. Journal of Heterocyclic Chemistry, 47, 63–67.
DOI: 10.1002/jhet.254.
Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A.
(2006). ZrOCl2·8H2O/silica gel as a new efficient and a
highly water–tolerant catalyst system for facile condensation
of indoles with carbonyl compounds under solvent-free con-
ditions. Journal of Molecular Catalysis A: Chemical, 253,
249–251. DOI: 10.1016/j.molcata.2006.03.043.
Luo, H., Xue, K., Fan, W., Li, C., Nan, G., & Li, Z. (2014). Hy-
drolysis of vegetable oils to fatty acids using Brønsted acidic
ionic liquids as catalysts. Industrial & Engineering Chem-
istry Research, 53, 11653–11658. DOI: 10.1021/ie501524z.
Ganem, B. (2009). Strategies for innovation in multicomponent
reaction design. Accounts of Chemical Research, 42, 463–472.
DOI: 10.1021/ar800214s.
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 5/29/15 10:20 PM