Paper
RSC Advances
reusability study. Meanwhile, the mass loss of the enzyme in the 11 P. J. Lisboa and A. F. Taktak, Neural Network, 2006, 19, 408–
recycling process may also lead to decrease in reaction
percentage conversion of dilauryl azelate ester.41
415.
12 M. Egmont-Petersen, D. de Ridder and H. Handels, Pattern
Recogn., 2002, 35, 2279–2301.
¨
13 J. J. Lahnajarvi, M. I. Lehtokangas and J. P. Saarinen,
Conclusions
Neurocomputing, 2004, 56, 345–363.
14 M. W. Craven and J. W. Shavlik, Future Generat. Comput.
Syst., 1997, 13, 211–229.
The ANN-based design of experiment was used for the synthesis
of dilauryl azelate ester. The optimization of process parameters
was carried out based on the investigations relating to the
inuence of enzyme amount, reaction time, reaction tempera-
ture, and molar ratio of substrates by using articial neural
networks. To obtain the qualied network, different algorithms
such as IBP, BBP, QP, GA and LM were learned by using
training, and testing data sets. The results of the learning
program were obtained by ve best topologies; IBP-4-14-1, BBP-
4-5-1, QP-4-13-1, GA-4-13-1 and LM-4-10-1. The performance of
the topologies was optimized by RMSE, AAD and R2. The
topology (IBP-4-14-1) with the lowest RMSE, AAD and the
highest R2 was selected as provisional network of the synthesis
of dilauryl azelate ester for validation test. The results of the
validation conrmed high predictability of the model. The
validated model determined the optimum values and relative
importance of the effective variables. The importance of the
variables which include molar ratio of substrates, 27.93%,
enzyme amount, 26.33%, reaction temperature, 25.65% and
reaction time, 20.09% showed none of the variables were
neglectable in this work. In conclusion, ANN is an efficient
quantitative tool which is able to model the effective input
variables to predict the conversion% of dilauryl azelate ester
enzymatic reaction.42
¨
15 D. Bingol, M. Hercan, S. Elevli and E. Kılıç, Bioresour.
Technol., 2012, 112, 111–115.
16 F. Despagne and D. L. Massart, Analyst, 1998, 123, 157R–
178R.
17 N. Chaibakhsh, M. Abdul Rahman, S. Abd-Aziz, M. Basri,
A. Salleh and R. Rahman, J. Ind. Microbiol. Biotechnol.,
2009, 36, 1149–1155.
18 H. R. Fard Masoumi, M. Basri, A. Kassim, D. Kuang
Abdullah, Y. Abdollahi, S. S. Abd Gani and M. Rezaee, Sci.
World J., 2013, 2013, 1–9.
19 S. C. Lau, H. N. Lim, M. Basri, H. R. F. Masoumi,
A. A. Tajudin, N. M. Huang, A. Pandikumar, C. H. Chia
and Y. Andou, PLoS One, 2014, 9, 1–10.
20 A. Ghaffari, H. Abdollahi, M. Khoshayand, I. S. Bozchalooi,
A. Dadgar and M. Raee-Tehrani, Int. J. Pharm., 2006, 327,
126–138.
21 M. G. Moghaddam, F. B. H. Ahmad, M. Basri and
M. B. A. Rahman, Electron. J. Biotechnol., 2010, 13, 3–4.
22 S. Aber, A. Amani-Ghadim and V. Mirzajani, J. Hazard.
Mater., 2009, 171, 484–490.
23 G. D. Garson, AI Expet, 1991, 6, 46–51.
24 M. Khare and S. S. Nagendra, Articial neural networks in
vehicular pollution modelling, Springer, 2007.
25 D. Salari, N. Daneshvar, F. Aghazadeh and A. Khataee, J.
Hazard. Mater., 2005, 125, 205–210.
26 Y. Abdollahi, A. Zakaria, A. H. Abdullah, H. R. F. Masoumi,
H. Jahangirian, K. Shameli, M. Rezayi, S. Banerjee and
T. Abdollahi, Chem. Cent. J., 2012, 6, 88.
27 H. R. F. Masoumi, M. Basri, A. Kassim, D. K. Abdullah,
Y. Abdollahi and S. S. A. Gani, J. Surfactants Deterg., 2014,
17, 287–294.
28 Y. Abdollahi, N. A. Sairi, M. K. Aroua, H. R. F. Masoumi,
H. Jahangirian and Y. Alias, J. Ind. Eng. Chem., 2014, 25,
168–175.
Acknowledgements
The nancial assistance provided by Universiti Putra Malaysia
under the Research University Grant Scheme (RUGS), is grate-
fully acknowledged.
References
1 A. Fitton and K. L. Goa, Drugs, 1991, 41, 780–798.
2 G. Webster, J. Am. Acad. Dermatol., 2000, 43, S47–S50.
´
3 J.-F. Hermanns, L. Petit, C. Pierard-Franchimont, P. Paquet 29 D. Rumelhart, G. Hinton and R. Williams, Nature, 1986, 323,
´
and G. Pierard, Dermatology, 2002, 204, 281–286.
533–536.
4 M. Nazzaro-Porro, Dermatology in Five Continents, Springer, 30 A. P. Plumb, R. C. Rowe, P. York and M. Brown, Eur. J. Pharm.
Verlag Berlin Heidelberg, 1988.
Sci., 2005, 25, 395–405.
5 D. Tamarkin, US Pat., 20,040,191,196, 2004.
6 C. Charnock, B. Brudeli and J. Klaveness, Eur. J. Pharm. Sci.,
2004, 21, 589–596.
7 P.-W. Hsieh, S. A. Al-Suwayeh, C.-L. Fang, C.-F. Lin,
C.-C. Chen and J.-Y. Fang, Eur. J. Pharm. Biopharm., 2012,
81, 369–378.
8 S. Haykin, Neural Networks: A Comprehensive Foundation,
Mac millian, New York, 1994.
9 M. Lam, Decis. Support Syst., 2004, 37, 567–581.
31 M. T. Hagan, H. B. Demuth and M. H. Beale, Neural network
design, Pws Boston, 1996.
32 A. Ghaffari, H. Abdollahi, M. R. Khoshayand, I. Soltani
Bozchalooi, A. Dadgara and M. Raee-Tehrani, Int. J.
Pharm., 2006, 327, 126–138.
33 A. E. Bryson, Y.-C. Ho and G. M. Siouris, IEEE Transactions on
Systems, Man, and Cybernetics, 1979, 9, 366–367.
34 M. Kasiri, H. Aleboyeh and A. Aleboyeh, Environ. Sci.
Technol., 2008, 42, 7970–7975.
10 R. Ghazali, A. Jaafar Hussain, N. Mohd Nawi and 35 W.-H. Ho, K.-T. Lee, H.-Y. Chen, T.-W. Ho and H.-C. Chiu,
B. Mohamad, Neurocomputing, 2009, 72, 2359–2367.
PLoS One, 2012, 7, 1–9.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 94909–94918 | 94917