Angewandte Chemie International Edition
10.1002/anie.201803384
COMMUNICATION
[
1]
Selected reviews, see: a) O. Daugulis, H.-Q. Do, D. Shabashov, Acc.
Chem. Res. 2009, 42, 1074 – 1086; b) D. A. Colby, R. G. Bergman,
J. A. Ellman, Chem. Rev. 2010, 110, 624 – 655; c) T. W. Lyons, M.
S. Sanford, Chem. Rev. 2010, 110, 1147 – 1169; d) L. Ackermann,
Chem. Rev. 2011, 111, 1315 – 1345; e) S. H. Cho, J. Y. Kim, J.
Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068 – 5083; f) L.
McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885
[10]
[11]
a) M. V. Leskinen, K.-T. Yip, A. Valkonen, P. M. Pihko, J. Am. Chem.
Soc. 2012, 134, 5750 – 5753; b) Z. Huang, G. Dong, J. Am. Chem.
Soc. 2013, 135, 17747 – 17750; c) Y. Chen, D. Huang, Y. Zhao, T.
R. Newhouse, Angew. Chem. Int. Ed. 2017, 56, 8258 – 8262;
Angew. Chem. 2017, 129, 8370 – 8374; d) X. Hu, X. Yang, X.-J. Dai,
C.-J. Li, Adv. Synth. Catal. 2017, 359, 2402 – 2406.
a) M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan,
Science 2013, 339, 1593 – 1596; b) F.-L. Zhang, K. Hong, T.-J. Li,
H. Park, J.-Q. Yu, Science 2016, 351, 252 – 256.
–
1898; g) T. Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011,
50, 3362 – 3374; Angew. Chem. 2011, 123, 3422 – 3435; h) C. L.
Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293 – 1314; i) C. S.
Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215 – 1292; j) K. M.
Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788
[12]
[13]
G. Maas, Angew. Chem. Int. Ed. 2009, 48, 8186 – 8195; Angew.
Chem. 2009, 121, 8332 – 8341.
a) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res. 2013, 46, 236 –
247; b) Y. Xia, D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810 –
13889.
–
802; k) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem.
Int. Ed. 2012, 51, 8960 – 9009; Angew. Chem. 2012, 124, 9092 –
9
142; l) O. Daugulis, J. Roane, L. D. Tran, Acc. Chem. Res. 2015,
[14]
[15]
a) C. Wang, Synlett 2013, 24, 1606 – 1613; b) W. Liu, L. Ackermann,
ACS Catal. 2016, 6, 3743 – 3752; c) Y. Hu, B. Zhou, C. Wang, Acc.
Chem. Res. 2018, 51, 816 – 827.
CCDC 1828348 (3aa) contains the supplementary crystallographic
data. These data can be obtained free of charge from The
48, 1053 – 1064.
[
[
2]
3]
a) Y. Kuninobu, Y. Nishina, T. Takeuchi, K. Takai, Angew. Chem.
Int. Ed. 2007, 46, 6518 – 6520; Angew. Chem. 2007, 119, 6638 –
6640; b) S. Sueki, Z. Wang, Y. Kuninobu, Org. Lett. 2016, 18, 304 –
3
07.
Data
Centre
via
a) B. Zhou, H. Chen, C. Wang, J. Am. Chem. Soc. 2013, 135, 1264
1267; b) R. He, Z. T. Huang, Q. Y. Zheng, C. Wang, Angew. Chem.
Int. Ed. 2014, 53, 4950 – 4953; Angew. Chem. 2014, 126, 5050 –
–
[16]
a) W.-W. Chan, S.-F. Lo, Z. Zhou, W.-Y. Yu, J. Am. Chem. Soc.
2012, 134, 13565 – 13568; b) S. Cui, Y. Zhang, D. Wang, Q. Wu,
Chem. Sci. 2013, 4, 3912 – 3916; c) T. K. Hyster, K. E. Ruhl, T.
Rovis, J. Am. Chem. Soc. 2013, 135, 5364 – 5367; d) Z. Shi, D. C.
Koester, M. Boultadakis-Arapinis, F. Glorius, J. Am. Chem. Soc.
2013, 135, 12204 – 12207.
W. Kirmse, Eur. J. Org. Chem. 2002, 2193 – 2256.
B. D. Mookherjee, R. R. Patel, W. O. Ledig, J. Org. Chem. 1971, 36,
4124 – 4125.
α-Diazoester, as exemplified by ethyl 2-diazopropanoate, showed
lower reactivity in this protocol and the corresponding product 3ar
was isolated in 24% yield (for detailes, see the SI).
a)) D. F. Taber, M. J. Hennessy, J. P. Louey, J. Org. Chem. 1992,
57, 436 – 441; b) D. F. Taber, R. J. Herr, S. K. Pack, J. M. Geremia,
J. Org. Chem. 1996, 61, 2908 – 2910.
5053; c) B. Zhou, P. Ma, H. Chen, C. Wang, Chem. Commun. 2014,
50, 14558 – 14561; d) B. Zhou, Y. Hu, C. Wang, Angew. Chem. Int.
Ed. 2015, 54, 13659 – 13663; Angew. Chem. 2015, 127, 13863 –
3867; e) Y. Hu, C. Wang, Sci. China Chem. 2016, 59, 1301 – 1305;
f) X. Yang, X. Jin, C. Wang, Adv. Synth. Catal. 2016, 358, 2436 –
1
[17]
[18]
2442; g) B. Zhou, Y. Hu, T. Liu, C. Wang, Nat. Commun. 2017, | 8:
1169; h) X. Yang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 923 –
928; Angew. Chem. 2018, 130, 935 – 940.
[19]
[20]
[
4]
a) W. Liu, J. Bang, Y. Zhang, L. Ackermann, Angew. Chem. Int. Ed.
2015, 54, 14137 – 14140; Angew. Chem. 2015, 127, 14343 –
14346; b) W. Liu, D. Zell, M. John, L. Ackermann, Angew. Chem.
Int. Ed. 2015, 54, 4092 – 4096; Angew. Chem. 2015, 127, 4165 –
169; c) W. Liu, S. C. Richter, Y. Zhang, L. Ackermann, Angew.
Chem. Int. Ed. 2016, 55, 7747 – 7750; Angew. Chem. 2016, 128,
878–7881; d) Y.-F. Liang, V. Müller, W. Liu, A. Münch, D. Stalke,
4
7
L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 9415 – 9419;
Angew. Chem. 2017, 129, 9543 – 9547; e) Z. Ruan, N. Sauermann,
E. Manoni, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 3172 –
3
176; Angew. Chem. 2017, 129, 3220 – 3224; f) H. Wang, M. M.
Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 6339 –
342; Angew. Chem. 2017, 129, 6436 – 6439; g) H. Wang, F.
6
Pesciaioli, J. C. A. Oliveira, S. Warratz, L. Ackermann, Angew.
Chem. Int. Ed. 2017, 56, 15063 – 15067; Angew. Chem. 2017, 129,
15259 – 15263; h) D. Zell, U. Dhawa, V. Müller, M. Bursch, S.
Grimme, L. Ackermann, ACS Catal. 2017, 7, 4209 – 4213.
[
5]
a) Q. Lu, S. Greßies, S. Cembellín, F. J. R. Klauck, C. G. Daniliuc,
F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 12778 – 12782; Angew.
Chem. 2017, 129, 12954 – 12958; b) Q. Lu, S. Greßies, F. J. R.
Klauck, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 6660 – 6664;
Angew. Chem. 2017, 129, 6760 – 6764; c) Q. Lu, F. J. R. Klauck, F.
Glorius, Chem. Sci. 2017, 8, 3379 – 3383; d) Q. Lu, S. Cembellín,
S. Greßies, S. Singha, C. G. Daniliuc, F. Glorius, Angew. Chem. Int.
Ed. 2018, 57, 1399 – 1403; Angew. Chem. 2018, 130, 1413 – 1417;
e) C. Zhu, J. L. Schwarz, S. Cembellín, S. Greßies, F. Glorius,
Angew. Chem. Int. Ed. 2018, 57, 437 – 441; Angew. Chem. 2018,
1
30, 445 – 449.
a) L. Shi, X. Zhong, H. She, Z. Lei, F. Li, Chem. Commun. 2015, 51,
136 – 7139; b) N. P. Yahaya, K. M. Appleby, M. Teh, C. Wagner,
[
6]
7
E. Troschke, J. T. W. Bray, S. B. Duckett, L. A. Hammarback, J. S.
Ward, J. Milani, N. E. Pridmore, A. C. Whitwood, J. M. Lynam, I. J.
S. Fairlamb, Angew. Chem. Int. Ed. 2016, 55, 12455 – 12459;
Angew. Chem. 2016, 128, 12643-12647; c) S.-H. Cai, L. Ye, D.-X.
Wang, Y.-Q. Wang, L.-J. Lai, C. Zhu, C. Feng, T.-P. Loh, Chem.
Commun. 2017, 53, 8731 – 8734; d) S.-Y. Chen, X.-L. Han, J.-Q.
Wu, Q. Li, Y. Chen, H. Wang, Angew. Chem. Int. Ed. 2017, 56, 9939
–
9943; Angew. Chem. 2017, 129, 10071 – 10075; e) S.-Y. Chen,
Q. Li, X.-G. Liu, J.-Q. Wu, S.-S. Zhang, H. Wang, ChemSusChem
017, 10, 2360 – 2364; f) C. Wang, A. Wang, M. Rueping, Angew.
Chem. Int. Ed. 2017, 56, 9935 – 9938; Angew. Chem. 2017, 129,
0067 – 10070.
2
1
[
[
7]
8]
Z. Huang, Q. P. Sam, G. Dong, Chem. Sci. 2015, 6, 5491 – 5498.
a) T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829 – 2844;
b) A. Gutnov, Eur. J. Org. Chem. 2008, 4547 – 4554; c) L. Yang, H.
Huang, Chem. Rev. 2015, 115, 3468 – 3517.
[
9]
a) D. R. Buckle, I. L. Pinto, in Comprehensive Organic Synthesis
(Ed.: I. Fleming), Pergamon, Oxford, 1991, pp. 119 – 149; b) J.
Muzart, Eur. J. Org. Chem. 2010, 3779 – 3790; c) A. Turlik, Y. Chen,
T. R. Newhouse, Synlett 2016, 27, 331 – 336.
This article is protected by copyright. All rights reserved.