134
ISANBOR AND EMOKPAE
4. Chamberlin, R. A.; Crampton, M. R. J Chem Soc, Perkin
Trans 2 1994, 425–432.
CONCLUSION
5. (a) Emokpae, T. A.; Uwakwe, P. U.; Hirst, J. J Chem
Soc, Perkin Trans 2 1993, 125–132; (b) Ayediran, D.;
Bamkole, T. O.; Hirst, J.; Onyido, I. J Chem Soc, Perkin
Trans 2 1977, 1580–1583; (c) Bamkole, T. O.; Hirst,
J.; Onyido, I. J Chem Soc, Perkin Trans 2 1979, 1317–
1320; (d) Bamkole, T. O.; Hirst, J.; Onyido, I. J Chem
Soc, Perkin Trans 2 1982, 889–893; (e) Ayediran, D.;
Bamkole, T.O.; Hirst, J. J Chem Soc, Perkin Trans 2
1976, 1396–1398.
6. Crampton, M. R.; Emokpae, T. A.; Isanbor, C. Eur J Org
Chem 2007, 8, 1378–1383.
7. Crampton, M. R.; Emokpae, T. A.; Isanbor, C.; Batsanov,
A. S.; Howard, J. A. K.; Mondal, R. Eur J Org Chem
2006, 1222–1230.
8. Chamberlin, R. A.; Crampton, M. R.; Robotham, I. A. J
Phys Org Chem 1996, 9, 152–158.
9. Crampton, M. R.; Gibson, B. J Chem Soc, Perkin Trans
2 1981, 533–539.
10. Crampton, M. R.; Greenhalgh, C. J Chem Soc, Perkin
Trans 2 1983, 1175–1178.
11. Hasegawa, Y. J Chem Soc, Perkin Trans 2 1985, 87–92.
12. Crampton, M. R.; Routledge, P. J Chem Soc, Perkin
Trans 2 1984, 573–581.
Our study reveals that in reactions in which steric ef-
fects are likely to be unimportant a 6-nitro group is
more activating than an aza function. The order is, how-
ever, reversed if there is severe congestion around the
reaction center. Despite the differences in the electron-
withdrawing ability and the steric requirements of these
substituents, the mechanism of the reaction of the pair
2c, 3c, and the pair 2b, 3d is not dramatically altered. In
acetonitrile, reactions with n-butylamine are not base
catalyzed. The only exception is the reaction with 2c
where proton transfer is partially rate limiting. This
mechanism was also observed in the reactions with
pyrrolidine and piperidine. It is only in the reaction
of 3d with piperidine that a plot of kA versus amine
concentration is linear with intercept.
For all the reactions with n-butylamine in DMSO,
nucleophilic attack is rate limiting. The reaction of
pyrrolidine with 2c in acetonitrile is not base catalyzed
whereas that in DMSO is catalyzed, an example of a
change in the rate-limiting step of an SNAr reaction
induced by a change of solvent. With piperidine, there
13. Chamberlin, R. A.; Crampton, M. R. J Chem Soc, Perkin
Trans 2 1995, 1831–1838.
is a shift from condition k ꢂ k2 + k3[B] to k
≈
−1
−1
k2 + k3[B] as the substrate is changed from 2c to 3c.
5−NO2
In acetonitrile, the k13−NO /k1
is greater than
2
14. Buncel, E.; Crampton, M. R.; Strauss, M. J.; Terrier, F.
Electron-deficient Aromatic- and Heteroaromatic-Base
Interactions; Elsevier: Amsterdam, 1994.
15. Buncel, E.; Dust, J. M.; Terrier, F. Chem Rev 1995,
95(7), 2261–2280.
16. Hamed, E. A.; El-Bardan, A. A.; Saad, E. F.; Gohar,
G. A.; Mohamed, G. H. J Chem Soc, Perkin Trans 2
1997, 2415–2421.
unity, due to intramolecular hydrogen bonding between
the ammonium hydrogen and the ortho-nitro group.
The sequence is reversed in DMSO due to extensive
solvation of the zwitterionic intermediate, the para-
like quinonoid structure being more solvated than the
ortho-like structure.
17. Kavalek, J.; Sterba, V. Collect Czech Chem Commun
1973, 38, 884–891.
18. Eggimann, W.; Schmid, P.; Zollinger, H. Helv Chim
Acta 1975, 58, 257–268.
19. Isanbor, C.; Emokpae, T. A.; Crampton, M. R. J Chem
Soc, Perkin Trans 2 2002, 2019–2024.
CI thanks the Royal Society UK for the award Travel Grant
to allow him to spend time in Durham University, UK, and
Dr. M. R. Crampton for helpful discussion.
20. Emokpae, T. A.; Isanbor, C. Int J Chem Kinet 2004, 36,
188–196.
21. Bunnett, J. F.; Morath, R. J. J Am Chem Soc 1955, 77,
5051–5055.
BIBLIOGRAPHY
22. (a) Bamkole, T. O.; Hirst, J.; Oderinde, R. Bull Chem
Soc Nig 1980, 5, 25–37; (b) Hirst, J.; Oderinde, R. Bull
Chem Soc Nig 1982, 7, 121–129.
23. Roberts, D. W. Chem Res Toxicol 1995, 8, 545–551;
and the references cited therein.
24. (a) Coetzee, J. F. Progr Phys Org Chem 1967, 4, 45–
92; (b) Coetzee, J. F.; Ritchie, C. D. Solute Solvent
Interactions; Marcel Dekker: New York, 1969.
25. Crampton, M. R.; Lord, S. D. J Chem Soc, Perkin Trans
2 1997, 369–376.
1. (a) Terrier, F. Nucleophilic Aromatic Displacement;
VCH: New York, 1991; (b) Bernasconi, C. F. MTP Int
Rev Sci Org Chem Ser 1 1973, 3, 33–63.
2. (a) El-Bardan, A. A.; El-Subruiti, G. M.; El-Hegazy,
F. E. M.; Hamed, E. A. Int J Chem Kinet 2002, 34, 645–
650; (b) El-Hegazy, F. E. M.; Fattah, S. Z. A.; Hamed,
E. A.; Sharaf, S. M. J Phys Org Chem 2000, 13, 549–
554; (c) El-Bardan, A. A. J Phys Org Chem 1999, 12,
347–353; (d) Hamed, E. A. Int J Chem Kinet 1997, 29,
599–605.
26. Buncel, E.; Wilson, H. Adv Phys Org Chem 1977, 14,
133–202.
27. Orvik, J. A.; Bunnett, J. F. J Am Chem Soc 1970, 92,
2417–2427.
3. Crampton, M. R.; Emokpae, T. A.; Howard, J. A. K.;
Isanbor, C.; Mondal, R. Org Biomol Chem 2003, 1,
1004–1011.
International Journal of Chemical Kinetics DOI 10.1002/kin