undesired primary alcohol. The reaction was then heated
to reflux, which delivered the primary amine in opti-
mized yields. The primary amine was then chemoselec-
tively acetylated with acetic anhydride in ethyl acetateꢀ
methanol (4:1), giving amide 10 in 67% yield over the two
steps.
Similar outcomes were observed with the samarium-based
reagent. Reduction with sodium borohydride under stan-
dard conditions in methanol produced the undesired axial
alcohol exclusively. On the other hand, reduction with
NaBH4 in aqueous THF substantially increased the frac-
tion of the desired equatorial alcohol, giving a 1:1 mixture
of separable products in 85% isolated yield.17 The under-
sired isomer could be separated and recycled through an
additional oxidationꢀreduction sequence.
Scheme 4. Synthesis of the Tetrahydropyran Core
Installation of vinyl iodide proceeded in high regioselec-
tivity and yield employing the silylcupration-iododesylila-
tion protocol.18,19 Silylcupration took place with complete
stereoselectivity and high regioselectivity (∼13:1). Subse-
quent iododesilyation with N-iodosuccinimide (NIS) in
hexafluoroisopropanol (HFIP) successfully delivered the
(E)-iodoalkene 3 in high yield and with complete retention
of the double bond geometry.18,20
Scheme 5. Completetion of Brevisamide (1) Synthesis
According to our synthesis plan, acetamide 10 was now
properly functionalized for the ensuing key Achmatowicz
rearrangement. Furan 10 underwent oxidative ring expan-
sion in the presence of NBS to form the cyclic hemiketal,
which was then treated with BF3 OEt2 and Et3SiH to pro-
3
duce intermediate 11 in a satisfactory 54% yield.15 Instal-
lation of the methyl group was achieved by conjugate
addition of lithium dimethylcuprate directly to enone 11
(81% yield, 8:1 dr).16
Known vinyltin reagent 2 (prepared by hydrostannyla-
tion of 2-butyn-1-ol)21 was used in a Stille cross-coupling
reaction with 3 to forge the conjugated diene (Scheme 5).
Sasaki and co-workers previously reported a similar Stille
Our next goalwas reduction of12under thermodynamic
conditions to generate the more stable diastereomer 13
that has the desired configuration at the newly generated
stereocenter. Our initial attempts centered on various ver-
sions of the MeerweinꢀPondorfꢀVerley (MPV) reaction
using Al(OPr-i)3 and Sm(OPr-i)3 reagents. With the alu-
minum-based reagent, the desired diastereomer 13 was
formed exclusively at high temepratures (100 °C), however,
at low yields. An unidentified byproduct was formed in
significant quantitites apparently resulting from reactivity
of the acetamide. At lower temperatures (75 °C), an equi-
molar mixture of diastereomeric alcohols was produced.
(17) Oguchi, T.; Watanabe, K.; Ohkubo, K.; Abe, H.; Katoh, T.
Chem.;Eur. J. 2009, 15, 2826–2845.
(18) (a) Ilardi, E. A; Stivala, C. E.; Zakarian, A. Org. Lett. 2008, 10,
1727–1730. (b) Lu, C.-D.; Zakarian, A. Org. Lett. 2007, 9, 3161–3163.
For other applications, see:(c) Coleman, R. S.; Walczak, M. C.;
Campbell, E. L. J. Am. Chem. Soc. 2005, 127, 16038–16039. (d)
Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125,
7822–7824. (e) Cha, J. Y.; Burnett, G. L., IV; Huang, Y.; Davidson, J. B.;
Pettus, T. R. R. J. Org. Chem. 2011, 76, 1361–1371. (f) Parker, K. A.;
Denton, R. W. Tetrahedron Lett. 2011, 52, 2115–2116. (g) Xie, Q.;
Denton, R.; Parker, K. A. Org. Lett. 2008, 10, 5345–5348. For a
structural study of HFIP, see:(h) Vuluga, D; Legros, J.; Crousse, B.;
Slawin, A. M. Z.; Laurence, C.; Nicolet, P.; Bonnet-Deplon, D. J. Org.
Chem. 2011, 76, 1126–1133.
(19) (a) Fleming, I.; Roessler, F. J. Chem. Soc., Chem. Commun.
1980, 276–277. (b) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem.
Soc., Perkin Trans. 1 1981, 2527. (c) Fleming, I.; Newton, T. W. J. Chem.
Soc., Perkin Trans. 1 1984, 1805. (d) Fleming, I.; Marigorta, E. M.
Tetrahedron Lett. 1985, 38, 4629–4632. (e) Archibald, S. C.; Barden,
D. J.; Bazin, J. F. Y.; Fleming, I.; Foster, C. F.; Mandal, A. K.; Mandal,
A. K.; Parker, D.; Takaki, K.; Ware, A. C.; Williams, A. R. B.; Zwicky,
A. B. Org. Biomol. Chem. 2004, 2, 1051–1064.
(15) Recent applications in synthesis: (a) Nicolaou, K. C.; Cole,
K. P.; Frederick, M. O; Aversa, R. J.; Denton, R. M. Angew. Chem.,
Int. Ed. 2007, 46, 8875–8879. (b) Harris, J. M.; O’Doherty, G. A.
Tetrahedron Lett. 2000, 41, 183–187. (c) Burke, M. D.; Berger, E. M.;
Schreiber, S. L. J. Am. Chem. Soc. 2004, 126, 14095–14104. (d) Noutsias,
D.; Kouridaki, A.; Vassilikogiannakis, G. Org. Lett. 2011, 13, 1166–
1169. (e) Henderson, J. A.; Jackson, K. L.; Phillips, A. J. Org. Lett. 2007,
9, 5299–5302.
(20) (a) Fuwa, H.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2006, 128,
9648–9650. (b) Fuwa, H.; Ebine, M.; Bourdelais, A. J.; Baden, D. G.;
Sasaki, M. J. Am. Chem. Soc. 2006, 128, 16989–16999.
(16) Martin, S. F.; Dodge, J. A.; Burgess, L. E.; Limberakis, C.;
Hartmann, M. Tetrahedron 1996, 52, 3229–3246.
(21) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Wada, A.; Ito, M.
Angew. Chem., Int. Ed. 1998, 37, 320–323.
3638
Org. Lett., Vol. 13, No. 14, 2011