Molecules 2020, 25, 465
7 of 8
10. Vennerstrom, J.L.; Arbe-Barnes, S.; Brun, R.; Charman, S.A.; Chiu, F.C.K.; Chollet, J.; Dong, Y.; Dorn, A.;
Hunziker, D.; Matile, H.; et al. Identification of an antimalarial synthetic trioxolane drug development
candidate. Nature 2004, 430, 900–904. [CrossRef]
11. Tang, Y.; Wittlin, S.; Charman, S.A.; Chollet, J.; Chiu, F.C.K.; Morizzi, J.; Johnson, L.M.; Tomas, J.S.; Scheurer, C.;
Snyder, C.; et al. The comparative antimalarial properties of weak base and neutral synthetic ozonides.
Bioorganic Med. Chem. Lett. 2010, 20, 563–566. [CrossRef]
12. Vennerstrom, J.L.; Dong, Y.; Chollet, J.; Matile, H. Spiro and Dispiro 1,2,4-Trioxolane Antimalarials. U.S.
Patent 6,486,199B, 2012.
13. Charman, S.A.; Arbe-Barnes, S.; Bathurst, I.C.; Brun, R.; Campbell, M.; Charman, W.N.; Chiu, F.C.K.;
Chollet, J.; Craft, J.C.; Creek, D.J.; et al. Synthetic ozonide drug candidate OZ439 offers new hope for
a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA 2011, 108, 4400–4405. [CrossRef]
14. Marti, F.; Chadwick, J.; Amewu, R.K.; Burrell-Saward, H.; Srivastava, A.; Ward, S.A.; Sharma, R.; Berry, N.;
O’Neil, P.M. Second generation analogues of RKA182: Synthetic tetraoxanes with outstanding in vitro and
in vivo antimalarial activities. Med. Chem. Comm. 2011, 2, 661–665. [CrossRef]
15. O’Neill, P.M.; Sabbani, S.; Nixon, G.L.; Schnaderbeck, M.; Roberts, N.L.; Shore, E.R.; Riley, C.; Murphy, B.;
McGillan, P.; Ward, S.A.; et al. Optimisation of the synthesis of second generation 1,2,4,5 tetraoxane
antimalarials. Tetrahedron 2016, 72, 6118–6126. [CrossRef]
16. Kumar, N.; Singh, R.; Rawat, D.S. Tetraoxanes: Synthetic and Medicinal Chemistry Perspective. Med. Res.
17. Kumar, N.; Sharma, M.; Rawat, D.S. Medicinal Chemistry Perspectives of Trioxanes and Tetraoxanes. Curr.
18. Kumar, N.; Khan, S.I.; Atheaya, H.; Mamgain, R.; Rawat, D.S. Synthesis and in vitro antimalarial activity of
tetraoxane-amine/amide conjugates. Eur. J. Med. Chem. 2011, 46, 2816–2827. [CrossRef] [PubMed]
19. Lobo, L.; Cabral, L.I.L.; Sena, M.I.; Guerreiro, B.; Rodrigues, A.S.; Andrade-Neto, V.F.; Cristiano, M.L.S.;
Nogueira, F. New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium
20. Araujo, N.C.P.; Afonso, R.; Bringela, A.; Cancela, M.L.; Cristiano, M.L.S.; Leite, R.B. Peroxides with
antiplasmodial activity inhibit proliferation of Perkinsus olseni, the causative agent of Perkinsosis in bivalves.
Parasitol Int. 2013, 62, 575–582. [CrossRef]
21. Cowan, N.; Yaremenko, I.A.; Krylov, I.B.; Terent’ev, A.O. Keiser, Elucidation of the in vitro and in vivo
activities of bridged 1,2,4-trioxolanes, bridged 1,2,4,5-tetraoxanes, tricyclic monoperoxides, silyl peroxides,
and hydroxylamine derivatives against Schistosoma mansoni. J. Bioorg. Med. Chem. 2015, 23, 5175–5181.
22. Opsenica, D.M.; Šolaja, B.A. Antimalarial peroxides. J. Serb. Chem. Soc. 2009, 74, 1155–1193. [CrossRef]
23. Amewu, R.K.; Chadwick, J.; Hussain, A.; Panda, S.; Rinki, R.; Janneh, O.; Ward, S.A.; Miguel, C.;
Burrell-Saward, H.; Vivas, L.; et al. Synthesis and evaluation of the antimalarial, anticancer, and caspase 3
activities of tetraoxane dimers. Bioorg. Med. Chem. 2013, 21, 7392–7397. [CrossRef]
24. Yang, D.M.; Liew, F.Y. Effects of qinghaosu (artemisinin) and its derivatives on experimental cutaneous
leishmaniasis. Parasitology 1993, 106, 7–11. [CrossRef]
25. Sen, R.; Bandyopadhyay, S.; Dutta, A.; Mandal, G.; Ganguly, S.; Saha, P.; Chatterjee, M. Artemisinin triggers
induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J. Med. Microbiol. 2007, 56,
26. Lezama-Dávila, C.M.; Satoskar, A.R.; Úc-Encalada, M.; Isaac-Márquez, R.; Isaac-Márquez, A.P. Leishmanicidal
Activity of Artemisinin, Deoxoartemisinin, Artemether and Arteether. Nat. Prod. Commun. 2007, 2, 1–4. [CrossRef]
27. Chollet, C.; Crousse, B.; Bories, C.; Bonnet-Delpon, D.; Loiseau, P.M. In vitro antileishmanial activity of
fluoro-artemisinin derivatives against Leishmania donovani. Biomed. Pharm. 2008, 62, 462–465. [CrossRef]
28. Sen, R.; Ganguly, S.; Saha, P.; Chatterjee, M. Efficacy of artemisinin in experimental visceral leishmaniasis.
Int. J. Antimicrob. Agents. 2010, 36, 43–49. [CrossRef]
29. Sen, R.; Saha, P.; Sarkar, A.; Ganguly, S.; Chatterjee, M. Iron enhances generation of free radicals by artemisinin
causing a caspase-independent, apoptotic death in Leishmania donovani promastigotes. Free Radic. Res. 2010
,
30. Dehkordi, N.M.; Ghaffarifar, F.; Hassan, Z.M.; Heydari, F.E. In Vitro and In Vivo Studies of Anti leishmanial
Effect of Artemether on Leishmania infantum. Jundishapur J. Microbiol. 2013, 6, e6379. [CrossRef]