Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Chemical Communication
above),8 which did not affect the SNR for [NiL ] due to
2 +
Ludwig, M. R. Bashir and K. J. Fowler, J. Magn. Reson.
DOI: 10.1039/C9CC01204D
sufficient difference in the resonance frequency of fluorine
Imaging, 2017, 46, 338.
1
9
atoms in these two molecules. The resulting F MR images
3
(a) S. Cheng, L. Abramova, G. Saab, G. Turabelidze, P. Patel,
M. Arduino, T. Hess, A. Kallen and M. Jhung, J. Am. Med.
Assoc., 2007, 297, 1542; (b) T. H. Darrah, J. J. Prutsman-
Pfeiffer, R. J. Poreda, M. E. Campbell, P. V. Hauschka and R.
E. Hannigan, Metallomics, 2009, 1, 479.
1
9
confirmed the potential of these complexes as F probes. The
1
+
obtained signal-to-noise ratio (SNR) for [NiL ] after 1 hour
acquisition time was 137, which was 2.8 times higher than that
2
+
of TFA (48). Concurrently, the SNR determined for [NiL ] was
.3 times higher than that of TFA. Obviously, the
4
5
V. M. Runge, Invest. Radiol., 2018, 53, 571.
E. M. Gale, I. P. Atanasova, F. Blasi, I. Ay and P. Caravan, J.
Am. Chem. Soc., 2015, 137, 15548.
3
1
9
paramagnetism of the metal ion affected the F relaxation
times to a significant extent; however, proportional shortening
of both 1 F T
6
(a) S. J. Ratnakar, M. Woods, A. J. M. Lubag, Z. Kovacs and A.
D. Sherry, J. Am. Chem. Soc., 2008, 130, 6; b) S. J. Ratnakar, T.
C. Soesbe, L. L. Lumata,Q. N. Do, S. Viswanathan, C.-Y. Lin, A.
D. Sherry and Z. Kovacs, J. Am. Chem. Soc., 2013, 135, 14904.
(a) S. J. Dorazio, P. B. Tsitovich, K. E. Siters, J. A. Spernyak and
J. R. Morrow, J. Am. Chem. Soc., 2011, 133, 14154; (b) P. B.
Tsitovich, J. A. Spernyak and J. R. Morrow, Angew. Chem. Int.
Ed., 2013, 52, 13997; (c) A. Olatunde, S. J. Dorazio, J. A.
Spernyak and J. R. Morrow, J Am Chem Soc., 2012, 134,
9
1
and T
2
resulted in the values that allow fast
repetitions with still sufficient signal, thus giving rise to greater
1
9
SNR values. In turn, these F MRI experiments demonstrated
7
1
+
2 +
advantageous properties of [NiL ] and [NiL ] over the
diamagnetic reference, indicating perspectives for their
1
9
consideration as F MRI contrast agents.
In conclusion, we have reported Ni
2
+
cross-bridged
1
8503.
derivatives that form extremely inert complexes with great
potential for the design of MRI probes. We demonstrated that
functionalisation of the macrocyclic platform with pendant
8
9
J. Ruiz-Cabello, B. P. Barnett, P. A. Bottomley and J. W. Bulte,
NMR Biomed. 2011, 24, 114.
(a) J. Blahut, P. Hermann, A. Gálisová, V. Herynek, I. Císařová,
Z. Tošnerc and J. Kotek, Dalton Trans., 2016, 45, 474; (b) M.
Yu, D. Xie, K. P. Phan, J. S. Enriquez, J. J. Luci and E. L. Que,
Chem. Commun., 2016, 52, 13885; (c) J. Blahut, K. Bernasek,
A. Galisova, V. Herynek, I. Cisarova, J. Kotek, J. Lang, S.
Matejkova and P. Hermann, Inorg. Chem., 2017, 56, 13337
arms containing amide protons and CF
3
1
groups provides
19
potential for these systems to be used as H/ F probes. The
2
+
19
paramagnetism of the Ni ion allows for a faster F MRI
acquisition thanks to the paramagnetic relaxation
enhancement effect. The paramagnetically shifted resonance 10 (a) K. L. Peterson, K. Srivastava and V. C Pierre, Front. Chem.
2
018, 6, 160; (b) a) K. Srivastava, E. A. Weitz, K. L. Peterson,
M. Marjanska and V. C. Pierre, Inorg. Chem., 2017, 56,
546−1557. (c) K. H. Chalmers, E. De Luca, N. H. M. Hogg, A.
of amide protons promotes the CEST effect safely distant from
bulk water. This work further expands the scope of
applications of the cyclam-based systems, ensuring exciting
forthcoming developments in the field of chemistry of MRI
contrast agents.
Authors R. P.-P., D. E.-G. and C. P.-I. thank Ministerio de
Economía y Competitividad (CTQ2016-76756-P) and Xunta de
Galicia (ED431B 2017/59 and ED431D 2017/01) for generous
financial support. R. P.-P. thanks Ministerio de Economía y
1
M. Kenwright, I. Kuprov, D. Parker, M. Botta, J. I. Wilson and
A. M. Blamire, Chem. Eur. J., 2010, 16, 134.
11 N. Cakić, T. Savić, J. Stricker-Shaver, V. Truffault, C. Platas-
Iglesias, C. Mirkes, R. Pohmann, K. Scheffler and G.
Angelovski, Chem. Commun., 2016, 136, 17954.
2 A. Rodriguez-Rodriguez, D. Esteban-Gomez, R. Tripier, G.
Tircso, Z. Garda, I. Toth, A. de Blas, T. Rodriguez-Blas and C.
Platas-Iglesias, J. Am. Chem. Soc., 2014, 54, 10056.
1
Competitividad for a PhD FPI grant (BES-2014-068399) and a 13 (a) R. Smith, D. Huskens, D. Daelemans, R. E. Mewis, C. D.
Garcia, A. N. Cain, T. N. C. Freeman, C. Pannecouque, E. De
Clercq, D. Schols, T. J. Hubin and S. J. Archibald, Dalton
Trans., 2012, 41, 11369; (b) D. G. Jones, K. R. Wilson, D. J.
Cannon-Smith, A. D. Shircliff, Z. Zhang, Z. Chen, T. J. Prior, G.
Yin and T. J. Hubin, Inorg. Chem., 2015, 54, 2221-2234.
4 (a) M. Meyer, V. Dahaoui-Gindrey, C. Lecomte and R.
Guilard, Coord. Chem. Rev., 1998, 178−180, 1313; (b) J. Dale,
Acta Chem. Scand., 1973, 27, 1115.
fellowship for a short term stay in Tuebingen (EEBB-I-17-
2213). T.S. thanks the German Academic Exchange Service
DAAD) for the Ph.D. fellowship.
1
(
1
Conflicts of Interest
There are no conflicts to declare.
1
1
5 E. Toth, E. Brucher, I. Lazar and I. Toth, Inorg. Chem., 1994,
3
3, 4070.
6 A. O. Olatunde, C. J. Bond, S. J. Dorazio, J. M. Cox, J. B.
Benedict, M. D. Daddario, J. A. Spernyak and J. R. Morrow,
Chem. Eur. J., 2015, 21, 18290.
Notes and references
1
The Chemistry of Contrast Agents in Medical Magnetic
Resonance Imaging, ed. A. E. Merbach, L. Helm and Eva Toth,
John Wiley & Sons Ltd, 2nd edn, 2013; (b) L. Helm, J. R.
Morrow, C. J. Bond, F. Carniato, M. Botta, M. Braun, Z.
Baranyai, R. Pujales-Paradela, M. Regueiro-Figueroa, D.
Esteban-Gómez, C. Platas-Iglesias and T. J. Scholl, Contrast
Agents for MRI: Experimental Methods, Eds V.C Pierre and
M. J. Allen, The Royal Society of Chemistry, 2017, Chapter 2,
pp 121-242.
(a) D. R. Roberts, S. M. Lindhorst, C. T. Welsh, K. R. Maravilla,
M. N. Herring, K. A. Braun, B. H. Thiers and W. C. Davis,
Invest. Radiol., 2016, 51, 280; (b) M. Birka, K. S. Wentker, E.
Lusmöller, B. Arheilger, C. A. Wehe, M. Sperling, R. Stadler
and U. Karst, Anal. Chem., 2015, 87, 3321; (c) E. Kanal and M.
1
7 L. Caneda-Martínez, L. Valencia, I. Fernández-Pérez, M.
Regueiro-Figueroa, G. Angelovski, I. Brandariz, D. Esteban-
Gómez and C. Platas-Iglesias, Dalton Trans., 2017, 46, 15095.
8 M. Zaiss, G. Angelovski, E. Demetriou, M. T. McMahon, X.
Golay and K. Scheffler, Magn. Reson. Med., 2018, 79, 1708.
9 (a) N. Camus, Z. Halime, N. Le Bris, H. Bernard, C. Platas-
Iglesias and R. Tripier, J. Org. Chem., 2014, 79, 1885; (b) W.
Liu, G. Hao, M. A. Long, T. Anthony, J.-T. Hsieh and X. Sun,
Angew. Chem. Int. Ed., 2009, 48, 7346.
1
1
2
2
0 (a) I. Solomon and N. Bloembergen, J. Chem. Phys., 1956, 25,
2
1
61; (b) N. Bloembergen and L. O. Morgan, J. Chem. Phys.,
961, 34, 842.
4
| Chem. Commun., 2016, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins