Communication
ChemComm
8 G. W. Ebert, W. L. Juda, R. H. Kosakowski, B. Ma, L. Dong, K. E.
Cummings, M. V. B. Phelps, A. E. Mostafa and L. Jianyuan, J. Org.
Chem., 2005, 70, 4314–4317.
9 J. Wu, X. Yang, Z. He, X. Mao, T. A. Hatton and T. F. Jamison, Angew.
Chem., 2014, 126, 8556–8560.
conditions (Fig. 6b). While not optimized for these substrates,
the high yields indicate that the process is adaptable to other
tandem syntheses of cyclic products via amine N-formylation
followed by acid catalyzed cyclization.
´
10 A. Correa and R. Martın, Angew. Chem., Int. Ed., 2009, 48, 6201–6204.
The first N-formylation step in the synthesis of benzimida-
zole from o-phenylenediamine, CO2 and hydrosilane, is base
catalyzed. However, base catalysts appear to have no effect on the
subsequent cyclization step, which uncatalyzed requires elevated
reaction temperatures. Elevation of the reaction temperatures
leads to the formation of undesirable side products, which can be
suppressed by elevated reaction pressures, the use of less reactive
hydrosilanes or by the absence of basic N-formylation catalysts
(all of which inhibit sequential CO2 reduction reactions). Never-
theless, this leads to the harsh reaction conditions frequently
observed in the tandem synthesis of azoles from ortho-substituted
anilines. The second cyclization step of the N-(2-aminophenyl)-
formamide intermediate is acid catalyzed. However, acids such as
B(C6F5)3 and BBr3 at least partly inhibit the N-formylation reaction,
which results in the need for equally harsh reaction conditions. A
two-step reaction appears to be the optimal solution, where the
N-formylation is performed catalyst free in DMSO followed by
acidification of the reaction mixture, which promotes the cyclization
of the N-formylated intermediate. Such a two-step process leads to
excellent yields under mild reaction conditions.
11 G. Zadel and E. Breitmaier, Angew. Chem., Int. Ed. Engl., 1992, 31,
1035–1036.
12 R. F. Nystrom, W. H. Yanko and W. Brown, J. Am. Chem. Soc., 1948,
70, 441.
13 T. Wartik and R. K. Pearson, J. Am. Chem. Soc., 1955, 77, 1075.
14 I. Knopf and C. C. Cummins, Organometallics, 2015, 34, 1601–1603.
15 J. R. Cabrero-Antonino, A. R. Ortiz and M. Beller, Angew. Chem., Int. Ed.,
2018, 12820–12838.
16 X.-F. Liu, X.-Y. Li, C. Qiao and L.-N. He, Synlett, 2018, 548–555.
17 A. Tlili, E. Blondiaux, X. Frogneux and T. Cantat, Green Chem., 2015,
17, 157–168.
18 Y. Li, X. Cui, K. Dong, K. Junge and M. Beller, ACS Catal., 2017, 7,
1077–1086.
19 G. Li, J. Chen, D.-Y. Zhu, Y. Chen and J.-B. Xia, Adv. Synth. Catal.,
2018, 360, 2364–2369.
20 C. C. Chong and R. Kinjo, Angew. Chem., Int. Ed., 2015, 54, 12116–12120.
21 M. Hulla, F. D. Bobbink, S. Das and P. J. Dyson, ChemCatChem,
2016, 8, 3338–3342.
22 C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu and B.-L. Lin, ACS Catal., 2016,
6, 7876–7881.
23 X.-F. Liu, X.-Y. Li, C. Qiao, H.-C. Fu and L.-N. He, Angew. Chem., Int. Ed.,
2017, 56, 7425–7429.
24 C. Xie, J. Song, H. Wu, B. Zhou, C. Wu and B. Han, ACS Sustainable
Chem. Eng., 2017, 5, 7086–7092.
25 O. Jacquet, D. N. C. Gomes, M. Ephritikhine and T. Cantat, Chem-
CatChem, 2013, 5, 117–120.
26 X. Gao, B. Yu, Z. Yang, Y. Zhao, H. Zhang, L. Hao, B. Han and Z. Liu,
ACS Catal., 2015, 5, 6648–6652.
27 X. Gao, B. Yu, Y. Zhao, L. Hao and Z. Liu, RSC Adv., 2014, 4, 56957–56960.
28 Z. Zhang, Q. Sun, C. Xia and W. Sun, Org. Lett., 2016, 18, 6316–6319.
29 M. Hulla, G. Laurenczy and P. J. Dyson, ACS Catal., 2018, 8,
10619–10630.
We believe that a similar optimization is possible for all
tandem syntheses of azole type compounds from ortho-substituted
anilines.
´
30 C. D. N. Gomes, O. Jacquet, C. Villiers, P. Thuery, M. Ephritikhine
Conflicts of interest
and T. Cantat, Angew. Chem., Int. Ed., 2012, 51, 187–190.
31 H. Lv, Q. Xing, C. Yue, Z. Lei and F. Li, Chem. Commun., 2016, 52,
6545–6548.
32 M. Hulla, D. Ortiz, S. Katsyuba, D. Vasyliev and P. J. Dyson, Chem. –
Eur. J., 2019, 25, 11074–11079.
There are no conflicts to declare.
33 S. N. Riduan, Y. Zhang and J. Y. Ying, Angew. Chem., Int. Ed., 2009,
48, 3322–3325.
Notes and references
´
1 J. Artz, T. E. Mu¨ller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, 34 F. J. Fernandez-Alvarez and L. A. Oro, ChemCatChem, 2018, 10,
A. Bardow and W. Leitner, Chem. Rev., 2018, 118, 434–504.
2 S. Wang and C. Xi, Chem. Soc. Rev., 2019, 48, 382–404.
4783–4796.
35 Q. Zhou and Y. Li, J. Am. Chem. Soc., 2015, 137, 10182–10189.
3 J. Klankermayer, S. Wesselbaum, K. Beydoun and W. Leitner, Angew. 36 X.-F. Liu, R. Ma, C. Qiao, H. Cao and L.-N. He, Chem. – Eur. J., 2016,
Chem., Int. Ed., 2016, 55, 7296–7343. 22, 16489–16493.
4 Q.-W. Song, Z.-H. Zhou and L.-N. He, Green Chem., 2017, 19, 3707–3728. 37 R. L. Nicholls, J. A. McManus, C. M. Rayner, J. A. Morales-Serna,
5 J. Pacansky, U. Wahlgren and P. S. Bagus, J. Chem. Phys., 1975, 62,
2740–2744.
6 R. R. Shaikh, S. Pornpraprom and V. D’Elia, ACS Catal., 2018, 8,
419–450.
A. J. P. White and B. N. Nguyen, ACS Catal., 2018, 8, 3678–3687.
38 X.-F. Liu, C. Qiao, X.-Y. Li and L.-N. He, Green Chem., 2017, 19,
1726–1731.
39 M.-Y. Wang, N. Wang, X.-F. Liu, C. Qiao and L.-N. He, Green Chem.,
2018, 20, 1564–1570.
7 F. D. Bobbink and P. J. Dyson, J. Catal., 2016, 343, 52–61.
13092 | Chem. Commun., 2019, 55, 13089--13092
This journal is ©The Royal Society of Chemistry 2019